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Abstract

This paper considers costly sequential search with price sorting in an online-shopping plat-

form in which either ascending or descending price sorting can be applied prior to the search

process. A fraction of consumers can search costlessly, while the remaining consumers have iden-

tical and positive search costs. The model generates price dispersion in the unique symmetric

equilibrium for each type of price sorting, as long as product searches are not perfectly accurate.

Moreover, if consumers can choose the type of price sorting, ascending price sorting is chosen

more frequently in markets in which product searches are more accurate. Finally, when search

costs are small, the availability of price sorting improves consumer surplus but has no impact

on industry profit.
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1 Introduction

Price dispersion in homogeneous product markets is a well-documented phenomenon in both offl ine

and online markets (see Baye et al. (2006) for a survey). Ever since Stigler introduced the term

"search" in his seminal article "The Economics of Information" (Stigler 1961), many researchers

have been trying to rationalize price dispersion using search-theoretical models, in which consumers

incur a positive cost of acquiring each additional price quote. Examples include Reinganum

(1979), MacMinn (1980), Burdett and Judd (1983), Rob (1985), Stahl (1989, 1996), and Janssen

and Moraga-González (2004). The idea behind these models is that firms charge different prices

because it is costly for consumers to identify the lowest price due to imperfect information.

The rapid technological growth of the Internet and the flourishing electronic commerce have been

enabling consumers to get better informed about prices using various price-searching tools. One

of the most commonly observed tools in online-shopping platforms is price sorting. For example,

both Amazon.com and eBay.com give customers the option to sort products by price either from

low to high, or from high to low. If a consumer can choose how to sort prices prior to the search

process, with homogeneous products, there is no doubt that the consumer would choose to sort by

price from low to high and therefore costlessly identify the product with the lowest price. Thus,

with price sorting, all the previously mentioned search models yield the Bertrand result: firms sell

products at marginal cost, and price dispersion disappears among firms that have positive market

shares. Yet, in online-shopping platforms, there is price dispersion despite consumers’ability to

price sort.

Why, then, do we still observe price dispersion in online markets where consumers can price sort

by "low price first"? Further, why do consumers have the option of sorting by "high price first"

when they could instead use ascending price sorting? This paper proposes an answer to both of

these questions by recognizing that in general, product searches in online-shopping platforms are

diffi cult to target perfectly, and the cheapest results are often not at all what one is looking for.

For example, consider a consumer who searches for "Garmin Forerunner 610" under the category

of "Electronics" at Amazon.com. After sorting the results by "low price first", the buyer will see a

variety of accessories such as USB cables, carrying cases and other irrelevant products for the first

five pages, and most of these results have prices less than $10. However, the buyer can find the

right product "Garmin Forerunner 610" immediately if instead, he sorts the results by "high price

first".

In this paper, we consider a homogeneous-product market in which product searches are im-

perfect and consumers have the option of choosing how to sort prices. We assume that in addition

to the homogeneous products that consumers are looking for, the search results also include some

cheap irrelevant products. Consumers attach zero value to the irrelevant products and will only

purchase the relevant products. A market is said to have a higher target accuracy if the fraction

of irrelavant products is lower.
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Three types of price sorting are considered in this paper: random price sorting, ascending price

sorting and descending price sorting. Under random price sorting, searchers sequentially sample

the products in a random order, as is commonly assumed in the literature. We use random price

sorting as the underlying model to study the impacts of the other two types of sorting. When

ascending (or descending, respectively) price sorting is applied, products are displayed from low

prices to high prices (or from high prices to low prices, respectively). Consumers sample the

products sequentially in the same order as they are displayed. Following Stahl (1989), we assume

that a fraction of consumers can search costlessly, while the remaining consumers have identical

and positive search costs.

We first assume that the type of price sorting (random, ascending or descending) is publicly

known and taken as given. For each scenario, we find that there is a unique symmetric equi-

librium,1 in which firms take the same mixed pricing strategy. Thus, our model generates price

dispersion. Intuitively, the existence of shoppers rules out the possibility that firms’equilibrium

price distribution having atoms at prices above the marginal cost. On the other hand, each firm is

able to earn a positive expected profit because there is positive probability that this firm becomes

a monopoly in the market, i.e., the only firm that offers the relevant product. This implies that

the equilibrium price distribution cannot be degenerate at the marginal cost. Hence, there are no

pure-strategy symmetric equilibria.

In online-shopping platforms, searching usually means clicking the links in the website. The

cost of each search is believed to be quite small. Throughout this paper, we focus on the small-

search-cost situations so that in equilibrium, search always takes place whenever irrelevant products

are discovered. In particular, under ascending price sorting, consumers never stop searching on

until all irrelevant products have been sampled, so that they end up purchasing the lowest-priced

relevant product due to the ascending order of prices. Under random and descending price sortings,

consumers stop searching and make a purchase only when the observed product is relevant and with

a price below some reservation price.

We then study how total welfare, consumer surplus and industry profit change with the type of

price sorting. We find that with small search costs, both ascending and descending price sortings

have no impact on industry profit. That is, the equilibrium expected profit of a high-type firm is

the same under each type of price sorting. This is because under each sorting regime, the upper

bound of the support of the equilibrium price distribution should be equal to the monopoly price.

Note that charging the monopoly price gives a high-type firm the same expected profit, regardless

of the type of sorting, because consumers will buy from this firm if and only if all other firms

are offering irrelevant products. Since any price in the equilibrium price support gives the same

expected profit, a high-type firm should earn identical expected profits under all sorting patterns.

1Following Stahl (1989), this paper only focuses on symmetric NE. In an asymmetric equilibrium, consumers
have different posterior distributions on prices based on their observations, which makes it diffi cult to characterize
the search behavior and firms’pricing strategies.
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We also find that, compared to random price sorting, both ascending and descending price

sorting improve total welfare. Intuitively, when the search cost is small, in equilibrium, consumers

always end up purchasing the relevant product as long as there are at least one high-type firms

in the market. Thus, price sorting affects total welfare only through the total costs of search

activities. In other words, the less frequently consumers search, the higher total welfare will be.

Note that, both ascending and descending sorting patterns provide useful price information that

prevents consumers from ineffi cient searches. More precisely, with small search costs, consumers

under random price sorting almost always want to continue searching because the benefit of making

an additional sample is very likely to be higher than the search cost. However, under ascending

price sorting, a consumer who have sampled a relevant product will stop searching, because the

next product is still a relevant one but with a higher price. Similarly, a consumer under descending

price sorting never searches on when observing an irrelevant product. Thus, consumers search less

frequently under both ascending and descending price sortings.

It is thus an immediate consequence that consumer surplus will increase when price sorting is

applied. Since consumer surplus is affected by both equilibrium prices and total search costs, this

implies an interesting fact that the main impact of price sorting is to reduce the total occurrence

of search costs, and its influences on pricing strategies are negligible. Actually, as the search cost

approaches zero, sorting only yields second-order effects on firms’equilibrium pricing strategies.

In other words, in case of small search costs, the price effect of sorting is dominated by the search

cost effect.

Finally, instead of fixing the sorting regime exogenously, we let consumers choose how to sort

products by price. We find that, with small search costs, random price sorting is never chosen in

equilibrium. In other words, consumers always take advantage of sorting options whenever they are

available. This is because switching from random price sorting to either ascending or descending

price sorting benefits consumers by saving their total search costs, with only negligible influence on

their purchase surplus. Morever, consumers choose ascending price sorting (or descending price

sorting, respectively) if the market has high (or low, respectively) target accuracy. This is because,

given the optimal search behaviors under each sorting pattern and the negligible price effects due

to small search costs, ascending price sorting can better save the total search costs in a market in

which product searches are more accurate.

There has been a rich literature on search. Stigler (1961) first thought of the "search" phenom-

enon as an economically important problem, and characterized the optimal search behavior when

a searcher can choose a fixed sample size, from which he takes the best alternative. McCall (1970)

considered sequential search and used the theory of optimal stopping rules to study unemployment

in labor market. Both Stigler (1961) and McCall (1970) assumed that the distribution of alterna-

tives is exogenously given and constant. Our model differs from theirs in that we have considered

both sides of the market and derived an equilibrium of price dispersion with optimizing consumers

and firms.
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As we mentioned before, our model is related to the branch of the search literature concerned

with price dispersion. Rob (1985) studied a model of sequential search with heterogeneous con-

sumer search costs in a Nash-Stackelberg game. He assumed that each firm acts as a Stackelberg

leader so that consumers are able to observe deviations by firms before they actually search. Stahl

(1989, 1996) considered the same situation, but with the Nash paradigm, which assumes that con-

sumers know only the equilibrium price distribution and observe the actual price only when a search

is made. Stahl (1989) assumed that there are two types of consumers: shoppers, who have zero

search costs, and searchers, who have a common positive search cost. Stahl (1996) considered a

more general distribution of consumers’search costs, which is atomless except possibly for a mass

of shoppers. All the above models yield equilibria in which firms take mixed pricing strategies,

thus produce price dispersion. Reinganum (1979) considered a sequential search model in which

firms have different production costs. In equilibrium, each firm takes pure pricing strategy based

on its marginal cost, and price dispersion is thus a result of cost heterogeneities. Finally, price dis-

persion can be generated by other models with fixed sample size search, including MacMinn (1980),

Burdett and Judd (1983), and Janssen and Moraga-González (2004). These models, however, fail

to provide explanations for price dispersion when price sorting is available.

There are other search models in the literature which do not generate price dispersion. Diamond

(1971) considered sequential searches through homogenous goods and found that as long as the

search cost is positive, the only equilibrium is that all firms set the monopoly price, which is

known as the Diamond Paradox.2 Wolinsky (1986) resolved the Diamond Paradox by introducing

horizontal product differentiation. Anderson and Renault (1999) reconsidered Wolinsky (1986)’s

model by introducing the heterogeneity of consumer tastes and the degree of product differentiation.

Both Wolinsky (1986) and Anderson and Renault (1999) derived a symmetric equilibrium in which

search takes place and firms charge the same price. Price sorting has no impact on the above

models because there is only one price in equilibrium.

Our work is also related to the strand of literature which considers non-random sequential

search. Weitzman (1979) considered a situation in which several heterogeneous alternatives are

available for search, and the optimal search policy should specify not only when to terminate

search, but also in which order the searcher should search on. Our model differs from his in

two ways. First, Weitzman (1979) allowed the searcher to choose the best search order. In our

model, however, the order that consumers sample the products is fully determined by firms’prices

and the type of price sorting. Second, while Weitzman (1979) only studied the optimal search

policy, our model explores the whole market equilibrium, including firms’pricing strategies, which

endogenously affect consumers’search order.

Some recent non-random search models include Arbatskaya (2007), Armstrong et al (2009) and

Zhou (2011), who assumed that the order in which consumers search the products is exogenously

2 In Diamond’s model, the Bertrand result is obtained when the search cost equals zero. Thus, as the search cost
approaches zero, the equilibrium price changes discontinuously from the monopoly level to the competitive level.
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fixed and common knowledge. Arbatskaya (2007) considered a market with homogenous goods,

where consumers search only for better prices. The model generates an equilibrium in which firms’

prices decline in the order of search. Armstrong et al (2009) and Zhou (2011), on the other hand,

considered horizontal product differentiation so that consumers search both for price and product

fitness.3 In contrast to Arbatskaya (2007), both Armstrong et al (2009) and Zhou (2011) found

equilibria in which prices increase in the order of search. The reason is that later-searched firms

have more monopoly power than earlier-sampled one. Our model differes from the above ones in

that the actual search order in our model can be affected by both consumers’and firms’behaviors.

For example, if customers sort by price from low to high, then a firm can make its product being

sampled earlier by charging a lower price.

The rest of this paper is organized as follows. Section 2 describes the market and three types of

price sorting are introduced to the search model. Section 3 considers the case in which the type of

price sorting is fixed and publicly known, and derives the equilibria for the three types of sorting,

respectively. Section 4 studies the impacts of ascending/descending price sorting, using the case of

random price sorting as the underlying model. Section 5 reconsiders the game by assuming that

the type of price sorting is chosen by consumers instead of exogenously given. Section 6 extends

our model to a more realistic case: more than one products are displayed in each web page, and

shows that our main results still hold. Section 7 concludes and discusses possible extensions in the

future. All the technical proofs are included in the Appendix.

2 The Model

Consider an oligopoly setting in which N firms compete in selling a homogeneous product to a

large group of consumers. Each firm has one unit of the product for sale, with identical production

cost normalized to zero. It is common knowledge that a firm’s product is either relevant, with

probability r, or irrelevant, with probability 1− r, with 0 < r < 1. Firms privately observe their

own types of the products. For ease of notation, a relevant product is called a high-quality product,

and all the irrelevant products are called low-quality products. Similarly, firms offering relevant (or

irrelevant, respectively) products are called high-type (or low-type, respectively) firms. Thus, the

probability r characterizes the target accuracy of the market. The higher r is, the more accurately

consumers can target their desirable products through searches. While consumers attach zero

value to irrelevant products, each relevant product gives the same utility for all consumers, which

is given by a > 0.

On the demand side is a mass of consumers, the size of which is normalized to one. Each

consumer wishes to purchase at most one unit of the product. The consumer’s surplus of purchase

3Armstrong et al (2009) allowed one firm to be prominent, which will be sampled first by all consumers. Other
firms will be sampled in a random order once the prominent firm’s offer is rejected. Zhou (2011) generalized
Armstrong et al (2009) by studying the case where the order in which firms are sampled is completely given.
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is given by,

u = q − p,

where q ∈ {a, 0} is the product quality, and p is the price charged by the firm. Throughout

this paper, we only study price strategies for high-type firms– firms that offer relevant products.

Without loss of generality, we assume that low-type firms always charge zero price and receive zero

profit. Consumers have the option of quitting the market without making any purchase, in which

case, both the firm and the consumer receive a utility of zero.

There are two types of consumers. A fixed proportion µ ∈ (0, 1) of consumers are assumed to

be "shoppers", who costlessly observe all firms’prices and qualities. The remaining proportion

1− µ of consumers are "searchers", who initially have imperfect information about the prices and
the qualities of firms’products. However, searchers can sequentially sample the products to find

out these information.

As is commonly assumed in the literature, the first sample is free, but each subsequent sample

costs the searcher c > 0. After incurring the search cost c, the searcher perfectly learns both

the price and the quality of the next product. The searcher then decides whether to continue his

search. The search process ends either when the searcher decides to stop sampling, or when all of

the N products have been sampled. Finally, the consumer’s search is with perfect recall so that

the searcher can purchase from the previously sampled firm that gives the highest surplus at no

additional search cost.

Prior to the search process, searchers may sort the products by their prices. Three sorting

regimes are considered: random price sorting (R), ascending price sorting (A) and descending price

sorting (D). Under random price sorting, searchers sample the products in a random order, as is

commonly assumed in the literature. When ascending (or descending, respectively) price sorting is

applied, the products are displayed, and thus sampled from low prices to high prices (or from high

prices to low prices, respectively). Thus, different from previous literature, our paper studies the

situation where firms’actions can affect consumers’search order. Finally, we assume that sorting

only gives the searcher the information that one price is higher or lower than the other. Searchers

do not observe the exact prices unless samples are made.

We will first study the case in which the type of price sorting is exogenously given and publicly

known to all parties. Our objective is to derive the firms’optimal pricing strategies, as well as

searchers’optimal search policy, under each type of sorting. Later we will consider the case where

the price sorting is endogenously determined by searchers. Specifically, choosing the price sorting

becomes part of searchers’strategy. And firms set prices taking into account the fact that searchers

always choose the price sorting that gives the highest expected purchase surplus.

The timing of the game is as follows. At the beginning, nature draws each firm’s quality type.

All parties publicly learn the type of price sorting. Firms only observe their own qualities, and
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simultaneously set their prices according to their quality types and the sorting option. Trades

take place in the next stage. The shoppers observe all the prices and qualities, and purchase the

product that gives the highest surplus, provided that this surplus is non-negative; otherwise they

leave the market without making any purchases. Searchers, on the other hand, search optimally

and decide which product to buy as long as the purchase surplus is non-negative.

3 The Equilibrium When Price Sorting is Fixed

The equilibrium concept we use in this paper is perfect Bayesian equilibrium. We focus on a

symmetric equilibrium in which high-type firms are taking the same pricing strategy.

Given the type of price sorting S ∈ {R,A,D}, high-type firms’pricing strategy can be denoted
by a cumulative distribution function FS(p), with pS and pS being the mimimum and maximum

element in its support,4 which satisfy that 0 ≤ p
S
≤ pS ≤ a.

The market equilibrium under price sorting S ∈ {R,A,D} thus consists of high-type firms’
price strategy FS(p) and a search policy, such that (i) given firms’price distributions, the search

policy is optimal for searchers; and (ii) each high-type firm finds it optimal to price according to

the distribution FS(p), given that consumers follow the search policy, and that all other high-type

firms follow the strategy FS(p).

3.1 Optimal Consumer Search

Given firms’pricing strategy FS(p), a searcher would search on if and only if the expected benefit

of doing so exceeds his total subsequent search costs. Searches are more likely to take place when

the search cost c per sample is small. Throughout this paper, we will only study the situations in

which search always occurs regardless of the type of price sorting. More precisely, under ascending

price sorting, a searcher should search on whenever observing a low-quality product. For the cases

of random and descending price sorting, we assume that the search cost is suffi ciently small so that

searches can take place even when a high-quality product is observed. This says that, while low-

quality products are never acceptable, a high-quality product does not necessarily stop searchers

from searching on. In particular, searchers stop sampling only when the observed high-quality

product’s price is low enough.

The reason that we focus on the small-search-cost situations is twofold. First, an additional

sample gives consumers two possible types of benefits, either when the next product has a better

quality, or when it has a lower price. In addition to guaranteeing that search always takes place

under all price sortings, small search costs allow us to examine both types of benefits.5 Second,

4There may be gaps in the price support. For example, the support can be [p
S
, α] ∪ [β, pS ], where α and β are

such that p
S
< α < β < pS .

5While both types of benefits can exist under random price sorting, only the first (or second) type exists under
ascending (or descending) price sorting.
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our real world examples are online purchases of goods and services. A search in this case always

means clicking a link in the website. Thus, the cost of making each sample is believed to be quite

small.

The optimal search policy is quite simple under ascending price sorting. Consumers never

search on when observing a high-quality product since the next sample is also of high quality but

with a higher price. Thus, the optimal search policy is to keep sampling as long as the observed

product is of low quality, and buy immediately from the first high-type firm that has been sampled.

Under random price sorting, for a low search cost, searchers always continue their searches when

observing low-quality products. Now suppose p ∈ [p
R
, pR] is the lowest price of all the high-quality

products that have been sampled. Then the expected benefit of sampling one more product is

given by

φR(p) = r

∫ p

p
R

(p− x)dFR(x). (1)

Since φR(p) is increasing in p, there exists a unique solution p̂R ∈ [p
R
, pR] that solves φR(p) = c,

such that φR(p) ≥ c if and only if p ≥ p̂R. It follows from Meir Kohn and Steven Shavell (1974),

Wolinsky (1986), and Stahl (1989) that, the optimal stopping rule under random sorting is to sample

the next product if and only if the lowest observed price p is higher than the reservation price p̂R.6

One can note that this optimal stopping rule is "myopic" in the sense that when deciding whether

to search on, consumers always behave as if the next product was the only one left to search.

Finally, let us consider the optimal search policy for descending price sorting. Since the low-

type firms always charge price zero, a searcher would never search on when oberving a low-quality

product because the next sample is still a low-type. The searcher would buy from the high-type

firm that is sampled last. Now we study whether a searcher should search on when all the sampled

products so far are of high-quality.

A searcher is said to be at stage n of the search process if he has sampled n high-quality products

(with N − n product left unsampled), for n = 1, ..., N − 1. Now consider a searcher at stage n,

with p ∈ [p
D
, pD] as the lowest price he observed. According to the decreasing order of prices, p

should be the price of the last sampled product. According to Bayes’Rule, the expected benefit

of sampling an additional product is given by

φD(p, n) =

∫ p

p
D

(p− x)d

(
1− r + rFD(x)

1− r + rFD(p)

)N−n
, for n = 1, ..., N − 1. (2)

Unlike the case of random price sorting, the expected benefit of sampling the next product

under descending price sorting depends not only on the current price, but also on the number of
6 It does not matter how we specify the stopping rule when p = p̂R. In the next section we will show that the

optimal price distribution has no atoms, so that the event p = p̂R has zero probability in equilibrium.
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products left unsampled. To understand expression (2), let random variable X̂ be the price of

the next product, where X̂ equals zero if the next product is of low-quality, and X̂ ∈ [p
D
, p] if the

next product is a high-type. Given the current price p, and that there are N − n products left
unsampled, the cumulative distribution function, GD(x; p, n), associated with variable X̂ is given

by

GD(x; p, n) = Pr{X̂ ≤ x|p, n}

=

(
1− r + rFD(x)

1− r + rFD(p)

)N−n
, for any x ∈ [p

D
, p],

since X̂ ≤ x implies that all the remaining N − n products have prices lower than x.

Thus, the expected benefit of observing X̂ is given by

φD(p, n) =

∫ p

p
D

(p− x)dGD(x; p, n),

which gives expression (2).

One can prove that φD(p, n) is increasing in p as long as (1− r + rFD(p))N−n − (1− r)N−n

is log-concave in p.7 Define p̂D,n as the reservation price at stage n, which solves φD(p, n) = c.

Thus, at stage n, the benefit of sampling the next product exceeds the search cost if and only if

the current price p is higher than the reservation price p̂D,n at stage n.

The following lemma states that with a group of increasing reservation prices, the optimal

stopping rule under descending price sorting is "myopic" and fully characterized by the reservation

prices.

Lemma 1 Suppose p̂D,1 ≤ p̂D,2 ≤ ... ≤ p̂D,N−1, then the optimal search policy under descending

price sorting is that, at stage n, a searcher continues sampling if and only if his current price is

higher than p̂D,n, for any n = 1, ..., N−1. In other words, the searcher stops sampling and purchases

from the current firm at the first stage at which the observed price falls below the corresponding

reservation price.

The intuition is as follows. At each stage, a searcher would obviously keep sampling if his current

price is higher than the reservation price. However, when the current price is below the reservation

price, the expected benefit of making one more sample at that stage is lower than the search cost.

Moreover, since the reservation prices are increasing, the expected benefits of searching on at future

stages will never cover the subsequent search costs. Hence, the total benefits of searching on is

7We will show later that log-concavity is actually satisfied for the optimal price distribution under descending
sorting.
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strictly less than the total search costs, even when future behaviors are taken into consideration.

As a result, searchers will stop searching and buy at the current price. Note that the assumption

of increasing reservation prices is crutial in obtaining a "myopic" stopping rule. To be precise,

it makes the next product less worth sampling as fewer products are left unsampled, so that if

searchers find that an additional sample is not worth it in the current stage, it is never worth it

in the future. The next lemma says that the reservation prices are indeed increasing if the total

number of firms N is not large.

Lemma 2 There exists a positive number N such that ∂φD(p,n)∂n < 0 as long as N < N .

Recall that the reservation price p̂D,n solves φD(p, n) = c. Thus, the condition ∂φD(p,n)
∂n < 0

immediately implies that p̂D,n is increasing in n. Note that
∂φD(p,n)

∂n < 0 is just a restatement that

searching on becomes less beneficial along the search process. The above lemma states that this is

true when N is small. Intuitively, under descending price sorting, low-quality products only appear

at the back of the sequence. In a market with a small number of products, the fewer products

remaining unsampled, the more likely that searchers will find the next product to be a low-quality,

which results in a lower expected benefit.

However, ∂φD(p,n)
∂n < 0 may not always hold if there are a large number of products. In

this case, searchers are "safe" at the beginning of the search process in the sense that the next

product is not likely to be a low-quality. Then searching on can become more beneficial along the

search process because with fewer products left, the price of the next high-quality product will be

lower under descending price sorting, which brings a higher expected benefit to searchers. The

optimal stopping rule for this case can be complex and no longer have the "myopic" property. In

particular, searchers may decide to search on even when the benefit of sampling the next product

in the current stage is smaller than the search cost, as long as the net benefits of future searches

are high. Throughout this paper, we simply assume that the number of products in the market is

not large, so that ∂φD(p,n)
∂n < 0 for any n = 1, ..., N − 1.

3.2 Optimal Pricing Strategy

In this section, we will derive the high-type firms’optimal pricing strategies for each type of price

sorting. For the case of random price sorting, we use a method similar to Stahl (1989)’s. A

consumer reservation price p̂R is exogenously fixed, conditional on which we derive the optimal

price distribution for high-type firms. The obtained price distribution will again result in a new

reservation price p̂′R, according to the previous section. Finally, the equilibrium requires that the

pre-given reservation price is consistent, that is, p̂R = p̂′R. This condition gives the equilibrium

reservation price.

Similarly, for the case of descending price sorting, we exogenously fix a group of reservation

prices: p̂D,1 ≤ p̂D,2 ≤ ... ≤ p̂D,N−1, and solve for high-type firms’ optimal price distribution.
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Finally, the pre-given reservation prices should be equal to those derived from the optimal price

distribution, which gives the equilibrium.

3.2.1 Random Price Sorting

This subsection considers the case of random price sorting. Let p̂R ∈ (0, a) be a pre-given reser-

vation price.8 Then, the optimal search rule can be stated as: continue to sample if the observed

product is a low-type, or if the observed product is a high-type but with a price higher than p̂R;

stop sampling and purchase the first high-quality product as long as its price is lower than p̂R. Let

FR(p; p̂R) be the high-type firms’optimal price distribution conditional on the above search policy.

Our first lemma in this section shows that this price distribution has no atoms.

Lemma 3 FR(p; p̂R) is atomless.

The intuition for Lemma 3 is that under random price sorting, a high-type firms can discretely

increase its demand by slightly lowering its price below the atom. Lowering the price obviously

increases shoppers’ demand discretely. Moreover, a lower price never hurts the demand from

searchers. This is because when the price decreases, while the order that the firm is sampled

remains unchanged, the purchase surplus becomes higher so that the firm is more likely to attract

the returning searchers who have sampled all the products.

Recall that pR and p
R
are the maximal and minimal elements of the price support. The

following lemma gives all the possible values of pR.

Lemma 4 The upper bound of the price support, pR, equals either p̂R or a.

If pR < p̂R, then only searchers will buy from the firm that charges the highest price pR, which

happens when this firm is first sampled by some searcher.9 However, this firm can do strictly

better by increasing its price from pR to p̂R, contradicting the optimality of the price distribution.

Similarly, if p̂R < pR < a, then charging price a is strictly better than charging pR. Thus, the

upper bound of the price support should be either p̂R or a.

Since we focus on the small-search-cost case in which searchers keep sampling when the observed

high-quality product has a high price, the reservation price should be strictly lower than the upper

8When p̂R ≥ a, searchers almost never search on when they observe high-quality products. Since we assume that
searches can take place when a high-quality product is observed, we must have p̂R strictly lower than a.

9Shoppers will buy at price pR only when this firm is the unique high-type firm in the market, that is, when a
monopoly exists.
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bound the price support. Thus, according to lemma 4, the only case we will consider is when

pR = a.

Note that given the price distribution FR(p; p̂R), the demand of a high-type firm, called firm i,

is

D(p) =

 µ [1− rFR(p; p̂R)]N−1 +
(1−µ)[1−(1−rF̂R)N ]

rNF̂R
if p

R
≤ p < p̂R

[1− rFR(p; p̂R)]N−1 if p̂R < p < a
, (3)

where F̂R = FR(p̂R; p̂R) is the probability that a high-type firm’s price is below the reservation

price.

To understand the demand function, note that by charging a price above p̂R, firm i cannot

attract searchers when they sample its product at the first time. Thus, both shoppers and searchers

buy from firm i if and only if it yields a higher surplus than any of its rivals, which happens with

probability [1− rFR(p; p̂R)]N−1.

On the other hand, if p
R
≤ p < p̂R, then firm i with price p can immediately keep a searcher who

just sampled its product. The first expression of the demand function represents firm i’s demand

from the shoppers. The second term can be rewritten as 1−µN
∑N−1

m=0

(
1− rF̂R

)m
, of which a typical

component, 1−µN (1−rF̂R)m, denotes the the fraction of searchers who buy from firm i before having

sampled m firms. Note that the probability that a firm is sampled without attracting the searcher

immediately is 1− rF̂R.

One can notice from (3) that a high-type firm’s demand drops discretely as its price p becomes

higher than p̂R. Intuitively, as firm i increases its price slightly above p̂R, it loses the whole "fresh

demand"10 from searchers all of a sudden. Since its demand from shoppers changes continuously,

the total demand drops discretely. The discontinuity of the demand function results in a gap in

the support of FR(p; p̂R), which starts at the reservation price p̂R. Since the demand discretely

drops only once, there is at most one gap, because otherwise a high-type firm can always raise its

price into the gap without affecting its demand. Thus, the support of FR(p; p̂R) is [p
R
, p̂R)∪ [p′R, a)

for some p′R ∈ (p̂R, a).

Now we will derive the conditional optimal price distribution. The optimality of FR(p; p̂R)

requires that a high-type firm earns the same expected profits, denoted by πR, when charging any

price in the support. Moreover, the expected profit by charging any price outside the price support

is no greater than πR. According to the demand function, we have

πR = aD(a) = a(1− r)N−1. (4)

10The notations "fresh demand" and "returning demand" were first used in Zhou (2011). The "fresh demand"
represents the demand from searchers who buy immediately after sampling the product. In contrast, the "returning
demand" is the demand from searchers who have sampled all the products.
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Solving πR = pD(p), our results are summarized in the following proposition.

Proposition 1 The optimal price distribution conditional on the reservation price p̂R ∈ (0, a) is

given by

F ∗R(p; p̂R) =


1
r

1−
(
πR
µp −

(1−µ)[1−(1−rF̂R)N ]
µrNF̂R

) 1
N−1

 if p
R
≤ p < p̂R

1
r

[
1−

(
πR
p

) 1
N−1

]
if p′R ≤ p < a

, (5)

where p
R
, F̂R and p′R satisfy the following equations

p
R

=
πR

µ+
(1−µ)[1−(1−rF̂R)N ]

rNF̂R

, (6)

p̂R =
πR

µ(1− rF̂R)N−1 +
(1−µ)[1−(1−rF̂R)N ]

rNF̂R

, (7)

p′R =
πR

(1− rF̂R)N−1
. (8)

One can easily check that any price outside the support [p
R
, p̂R) ∪ [p′R, a) gives a lower profits

than πR. Our last step is to find a consistent reservation price. According to Equation (1) and

the condition that φR(p̂R) = c, a consistent reservation price p̂R should satisfy that

r

∫ p̂R

p
R

(p̂R − x)dF ∗R(x; p̂R) = c. (9)

The following proposition gives the existence and uniqueness of the consistent reservation price.

Proposition 2 When search cost c is suffi ciently small, there is a unique p̂R that solves Equation
(9). Moreover, the consistent reservation price increases as the search cost becomes larger.

As an extreme case, when search cost c approaches zero, the probability F̂R converges to zero.

According to (6)-(8), this means that all p
R
, p̂R and p′R converge to the same value πR = a(1−r)N−1.

Thus, the gap in the price support disappears and the optimal price distribution becomes

F ∗R(p) =
1

r
[1−

(
πR
p

) 1
N−1

], for p ∈ [πR, a).

Intuitively, this price distribution is the one as if all consumers are shoppers, that is, all consumers

purchase the product with the highest surplus.
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Finally, to relate our result to the search literature, one can notice that, in our model, the price

dispersion is a result of the assumption that the fraction of shoppers µ is strictly between zero and

one. In other words, both shoppers and searchers exist in the market. The equilibrium of our

model would be totally different if there were only shoppers or searchers. For example, when all

the consumers are searchers, then as long as the search cost is positive (no matter how small it is),

all high-type firms charging price a constitutes an equilibrium, in which searchers always purchase

from the first firm they sample. This is the well-known Diamond Paradox. On the other hand,

when there are only shoppers, then the only equilibrium is that all firms price at their marginal

cost, zero, which is exactly the Bertrand result. Hence, our results are consistent with Stahl

(1989)’s even when vertical product differentiation is considered. Moreover, while Wolinsky (1986)

and Anderson and Renault (1999) succeeded in resolving the Diamond Paradox by introducing

horizontal product differentiation, our model shows that vertical differentiation alone is not enough

to "get around" the the Diamond Paradox, unless some consumers are allowed to have zero search

cost.

3.2.2 Ascending Price Sorting

This subsection studies the equilibrium under ascending price sorting. Recall that when search cost

is small, the optimal search pocily is that searchers continue to search if and only if a low-quality

product is observed. Let FA(p) be the high-type firm’s optimal pricing strategy, with pA and pA
as the highest and lowest elements of the price support, where 0 ≤ p

A
≤ pA ≤ a.

Lemma 5 FA(p) is atomless.

The intuition here is almost the same as that for lemma 3. Under ascending sorting, a lower

price not only lets the firm be sampled earlier, but increases the purchase surplus so that a returning

searcher is more likely to make a purchase.

Lemma 6 pA = a and there is no gap in the price support.

If the upper bound of the price support is strictly below a, then any price between pA and a

should result in the same demand as pA does. This obviously contradicts the optimality of FA(p).

Similarly, if there is a gap in the price support, then the high-type firm can always raise its price

into the gap without affecting the demand, hence strictly increasing its profits.

Given the price distribution FA(p) and the consumer’s search rule, both shoppers and searchers

will purchase from the high-type firm that charges the lowest price. In other words, searchers

behave exactly the same as shoppers. A high-type firm’s total demand is thus given by

D(p) = [1− rFA(p)]N−1 . (10)
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Let πA be the high-type firm’s expected profit under ascending price sorting, then

πA = aD(a) = a (1− r)N−1 . (11)

The optimal price distribution F ∗A(p) can thus be obtained by solving πA = pD(p).

Proposition 3 When search cost c is lower than φA, the optimal price distribution under ascending
sorting is

F ∗A(p) =
1

r
[1−

(
πA
p

) 1
N−1

], for p ∈ [p
A
, a), (12)

where

p
A

= πA = a (1− r)N−1 , (13)

φA = min
1≤n≤N−1

φA(n), (14)

φA(n) =
C(N,n) (1− r)n rN−n∑N
i=nC(N, i) (1− r)i rN−i

∫ a

p
A

[
1− (1− F ∗A(p))N−n

]
dx. (15)

Here C(N,n) is the number of combinations of n out of N objects, which is given by

C(N,n) =
N !

(N − n)!n!
.

Note that any price below p
A
cannot be a profitable deviation because it gives the same demand

as p
A
does. This verifies the optimality of F ∗A(p).

Expression (15) gives the expected benefit of sampling an additional product after n low-type

firms have been sampled, n = 1, ..., N − 1. Given the increasing price order, and the fact that

the first n products have low quality, let random variable X̂ be the price of the next product.

Obviously, X̂ = 0 if the next product is a low-type; and X̂ ∈ [p
A
, a] if the next product is a

high-type. Then for any x ∈ [p
A
, a], the probability that X̂ > x is given by

C(N,n) (1− r)n rN−n (1− F ∗A(p))N−n∑N
i=nC(N, i) (1− r)i rN−i

,

where the denominator is the probability that at least n products are of low quality, and the

numerator is the probability that only m products have low quality, with all the other products

being high-types with prices higher than x.
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Let GA(x;n) be the cumulative distribution function associated with X̂, given that n low-quality

products have been observed. Then

GA(x;n) = 1− C(N,n) (1− r)n rN−n (1− F ∗A(p))N−n∑N
i=nC(N, i) (1− r)i rN−i

, for x ∈ [p
A
, a],

and by definition

φA(n) =

∫ a

p
A

(a− x) dGA(x;n),

which immediately gives (15). Finally, the condition c < φA guarantees that searchers never stop

sampling until a high-quality product is observed.

3.2.3 Descending Price Sorting

In this subsection, we derive the equilibrium price distribution for descending price sorting, under

the assumption that the search cost is suffi ciently small. The analyses for random price sorting

show that to avoid the Diamond Paradox, we need to assume the existence of shoppers, that is,

assume µ > 0. This seems not to be a suffi cient condition when descending sorting is under

consideration. The following lemma states that even when both shoppers and searchers exist in

the market, the Diamond result can still be obtained as long as µ is small.

Lemma 7 Under descending price sorting, if µ ≤ 1−(1−r)N−rN(1−r)N−1

1−(1−r)N−rN(1−r)N−1+r(N−1) , then there exists

an equilibrium in which all high-type firms set a price equal to a, and searchers purchase from the

first firm that they sample.

Intuitively, under descending price sorting, by raising its price, a high-type firm can make itself

more likely to be sampled earlier, thus capturing a higher "fresh demand" from searchers,11 inspite

of the fact that doing so can lower the damand from shoppers. Thus, the fractions of shoppers

and searchers play an important role in determining firms’total demand. Specifically, when µ is

low enough, the amount of searchers is so large that the increased "fresh demand" from searchers

always outweighs the demand loss from shoppers. Thus, it is profitable for high-type firms to

increase their prices to the highest level, a.

For the rest of this section, we assume that µ > 1−(1−r)N−rN(1−r)N−1

1−(1−r)N−rN(1−r)N−1+r(N−1) so that the Dia-

mond result does not hold. We aim at solving an equilibrium with price dispersion.

Let p̂D = (p̂D,1, ..., p̂D,N−1) be a set of pre-given reservation prices such that 0 < p̂D,1 ≤
p̂D,2 ≤ ... ≤ p̂D,N−1 < a.12 The conditional optimal price distribution for high-type firms is

11A higher price may also cause a loss of the demand from the returning searchers who have sampled all the
products. But since the later sampled products always have lower prices, this type of demand is very limited (a
searcher will go back to purchase a previously sampled product only if all the later sampled products are low-types).
12Under descending price sorting, we assume that the search cost is so small that search takes place at each stage

as long as the current price is very high.
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denoted by FD(p; p̂D). Let pD and pD be the upper and lower bounds of the price support, where

0 ≤ p
D
≤ pD ≤ a.

To focus on the interesting cases, we assume that µ is suffi ciently large so that FD(p; p̂D) is

atomless13. The situation here is slightly different from those under random and ascending sortings,

where undercutting a price atom will obviously not decrease the firm’s demand from searchers. For

descending price sorting, charging a price slightly below an atom would reduce a high-type firm’s

"fresh demand" from searchers because other firms that charge the atom price would be sampled

ahead of this firm. Our assumption simply states that if there are suffi ciently large amount of

shoppers, then the loss of "fresh demand" is always dominated by the discrete increase of the

demand from shoppers, thus making this deviation strictly profitable.

The next lemma characterizes the upper bound of the price support.

Lemma 8 When the search cost is suffi ciently small, the upper bound of the price support, pD,
equals a.

The intuition for lemma 8 is the same as that for lemma 4. Since search takes place at each

stage as long as the observed price is high enough, the upper bound of price support should be

above the highest reservation price. Thus, a high-type firm that charges price pD has positive

demand only if all other firms are low-types. Suppose pD is strictly lower than a, then charging

price a is strictly better than charging pD because increasing the price from pD to a will not affect

the high-type firm’s demand.

For ease of notation, define

p̂D,0 ≡ pD and p̂D,N ≡ pD = a.

We now derive the high-type firm’s demand function for each price interval, p ∈ (p̂D,n, p̂D,n+1],

where n = 0, 1, ..., N − 1. Let D0(p) and D1(p) be the demand from shoppers and searchers,

respectively. Thus, the total demand is given by

D(p) = µD0(p) + (1− µ)D1(p), (16)

where D0(p) = [1− rFD(p; p̂D)]N−1 since shoppers buy at price p if and only if all other products

are either low-quality or have a price higher than p.

13As µ approaches 1, the optimal price distribution is obviously atomless because all consumers are shoppers.
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To derive the demand from searchers, note that

D1(p) = Pr{searchers buy at price p}

=
N−1∑
k=0

Pr{searchers buy at price p, with k prices higher than p}

=

N−1∑
k=0

D1(p, k), (17)

where D1(p, k) = Pr{searchers buy at price p, and there are k prices higher than p}, for k =

0, 1, ..., N − 1.

We have that for any p ∈ (p̂D,n, p̂D,n+1],

D1(p, k) =


C(N − 1, k) (1− r)N−1−k [r − rFD(p; p̂D)]k , if k < n

C(N − 1, k) (1− r + rFD(p; p̂D))N−1−k [r − rFD(p; p̂D)]k , if k = n

C(N − 1, k) (1− r + rFD(p; p̂D))N−1−k
[
r − rF̂D,k

]k
, if k > n

,

where F̂D,k = FD(p̂D,k; p̂D) and C(N −1, k) is the number of combinations of k out of N −1 prices,

that is,

C(N − 1, k) =
(N − 1)!

(N − 1− k)!k!
, for any k < N − 1.

To understand the expression of D1(p, k), note that if there are k < n prices higher than p, due

to the fact that p > p̂D,n, searchers will not accept price p without further searches, which means

that searchers buy at price p only if all the products with prices lower than p are low-quality. Thus,

in this case, D1(p, k) equals the probability that k out of N − 1 prices are higher than p, and the

rest N − 1− k prices are zero.14

If k = n, then price p is the (n+ 1) th highest price of all products. Since p̂D,n < p ≤ p̂D,n+1,

searchers never accept any price higher than p, and buy at p immediately without further searches.

Thus, D1(p, k) equals the probability that k out of N − 1 prices are higher than p, and the rest

N − 1− k prices are lower than p.

Finally, if k > n, due to the increasing order of reservation prices, price p will be immediately

accepted by searchers since p ≤ p̂D,n+1 ≤ p̂D,k. Thus, searchers buy at p only if they do not accept
any prices higher than p, that is, the previous k prices should be higher than the reservation price

p̂D,k. In other words, D1(p, k) is the probability that k out of N − 1 prices are higher than p̂D,k,

and the rest N − 1− k prices are lower than p.
14Zero price means the product is of low quality.

18



According to (16) and (17), the total demand for p ∈ (p̂D,n, p̂D,n+1] is given by

D(p) = µ [1− rFD(p; p̂D)]N−1 (18)

+ (1− µ)
n−1∑
k=0

C(N − 1, k) (1− r)N−1−k [r − rFD(p; p̂D)]k

+ (1− µ)C(N − 1, n) (1− r + rFD(p; p̂D))N−1−n [r − rFD(p; p̂D)]n

+ (1− µ)
N−1∑
k=n+1

C(N − 1, k) (1− r + rFD(p; p̂D))N−1−k
[
r − rF̂D,k

]k
.

Similar to the case of random price sorting, the above demand function is discontinuous at each

reservation price p̂D,n. Precisely, for each n = 1, ..., N − 1, we have that

lim
p→p̂D,n−

D(p)− lim
p→p̂D,n+

D(p)

= (1− µ)C(N − 1, n− 1)
(
r − rF̂D,n

)n−1 [(
1− r + rF̂D,n

)N−n
− (1− r)N−n

]
> 0.

The intuition is as follows. When a high-type firm slightly increases its price above p̂D,n, its

demand from searchers drops discretely conditional on the case that this firm charges the n −
th highest price among all firms, because the high-type firm no longer captures all the "fresh

demand" from searchers when it is n − th sampled. As a result, there must be N − 1 gaps in

distribution FD(p; p̂D)’s support. The price support is the union of N intervals, which has the form

∪N−1n=0 [p′D,n, p̂D,n+1), where p
′
D,n ∈ (p̂D,n, p̂D,n+1) for any n = 1, ..., N − 1 and p′D,0 = p̂D,0 = p

D
.

It follows from the demand function (18) that D(a) = (1− r)N−1. Thus, the high-type firm’s
expected profit is

πD = aD(a) = a(1− r)N−1. (19)

The conditional optimal price distribution is then given in the following proposition.

Proposition 4 Let F ∗D(p; p̂D) be the optimal atomless price distribution conditional on the set of

reservation prices such that 0 < p̂D,1 ≤ p̂D,2 ≤ ... ≤ p̂D,N−1 < a. Then, for any n = 0, 1, ..., N − 1

and p ∈ [p′D,n, p̂D,n+1], F
∗
D(p; p̂D) solves

πD
p

= D(p),
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where D(p) is given in (18), p
D
, F̂D,n and p′D,n for n ≥ 1 are determined by

πD
p
D

= µ+ (1− µ)
N−1∑
k=0

C(N − 1, k) (1− r)N−1−k
[
r − rF̂D,k

]k
, (20)

F̂D,n = F ∗D(p̂D,n; p̂D) = F ∗D(p′D,n; p̂D), (21)

πD
p′D,n

= lim
p→p′D,n

D(p). (22)

To verify the optimality of F ∗D(p; p̂D), one can easily check that any price outside the support

∪N−1n=0 [p′D,n, p̂D,n+1) cannot be a profitable deviation.

Moreover, it follows from (20) that [1− r + rF ∗D(p; p̂D)]N−n − (1− r)N−n is log-concave in p
within the price support, which verifies that the expected benefit of sampling another product at

stage n,
∫ p
p
D

(p− x)d
(
1−r+rF ∗D(x;p̂D)
1−r+rF ∗D(p;p̂D)

)N−n
, is increasing in p. A set of consistent reservation prices

p̂D thus requires that

∫ p̂D,n

p
D

(p̂D,n − x)d

(
1− r + rF ∗D(x; p̂D)

1− r + rF̂D,n

)N−n
= c, for all n = 1, ..., N − 1. (23)

Finally, the existence and uniqueness of the set of consistent reservation prices is given in the

following proposition.

Proposition 5 When search cost c is suffi ciently small, there is a unique set of reservation prices
(p̂D,1, ..., p̂D,N−1) that solves Equation (23).

Similar to the case of random price sorting, as search cost c approaches zero, all reservation

prices p̂D,n, as well as the lower bound pD, converge to πD = a(1 − r)N−1. The optimal price

distribution then becomes the one as if all consumers are shoppers.

4 The Impacts of Price Sorting

In this section, we use random price sorting as the underlying model and study the effects of

ascending price sorting and descending price sorting. We explore how price sortings affect market

performance. Given the type of price sorting S ∈ {R,A,D}, let TWS , ΠS and CSS be total welfare,

industry profit and consumer surplus, respectively. Since there are two types of consumers, let

CS0S and CS1S be the surpluses for shoppers and searchers, respectively. The total consumer

surplus is thus a weighed average of CS0S and CS
1
S , depending on the fraction of shoppers. That
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is, CSS = µCS0S + (1− µ)CS1S . Finally, let NS be the average number of searches made by

consumers.

Our first result describes the impact of price sorting on the search intensity.

Proposition 6 When search cost c is small, compared to random price sorting, consumers search

less often under both ascending and descending price sortings. Specifically, we have

NA < ND < NR, if r > 1/2;

and ND < NA < NR, if r < 1/2.

Intuitively, for the extreme case in which search is costless, consumers under random price

sorting will sample all the products before making a purchase. However, under ascending price

sorting, consumers would stop searching when observing the first high-quality product because

they know that this product has the lowest price and thus the highest purchase surplus. Similarly,

under descending price sorting, the search process terminates when all the high-quality products

have been sampled. Thus, both types of sorting reduce the number of searches by providing

useful price information to consumers. Finally, it is obvious that search terminates earlier under

ascending (descending) price sorting when firms are more (less) likely to be high-type’s, that is,

when r > (<)1/2. Although this explanation is provided for the extreme case where search cost c

approaches zero, our result still holds for positive search costs, as long as c is small.

The following result shows that price sorting always improves the total welfare.

Proposition 7 When search cost c is small, (i) both ascending and descending price sortings
improve total welfare; (ii) ascending price sorting has a greater improvement on total welfare than

descending price sorting if and only if r > 1/2. That is,

TWA > TWD > TWR, if r > 1/2;

and TWD > TWA > TWR, if r < 1/2.

Total welfare depends on the expected benefits of the trade between firms and consumers, and

the total expected costs of the search activities. Note that regardless of the type of sorting,

a consumer always ends up purchasing a high-quality product, as long as there is at least one

high-type firm in the market. This implies that the expected benefits of the trade should be

a
[
1− (1− r)N

]
, which is the same under all types of price sortings. Thus, the less frequently

consumers search, the higher total welfare will be. Proposition 7 thus follows immediately from

Proposition 6: price sorting always provides useful price information that prevents consumers from
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ineffi cient searches, and ascending (descending) price sorting better saves the total occurence of

search costs when there are more high-quality (low-quality) products in the market.

The next result describes the impacts of price sortings on industry profits.

Proposition 8 When search cost c is small, both ascending and descending sortings have no impact
on industry profits. That is

ΠA = ΠD = ΠR

To explain this result, note that under each type of price sorting, a high-type firm earns the

same expected profit when charging any price in the support of the optimal price distribution. In

addition, when charging the monopoly price, a, which equals the high-type product’s quality,15

the high-type firm earns the same expected profit regardless of the type of price sorting, because

consumers will buy from this firm if and only if all other firms are low-types. Thus, the expected

profit of a high-type firm is the same for all types of price sortings. Since a low-type firm always

earns zero profit, industry profits should be the same under each price sorting.

Finally, the result on consumer surplus follows immediately from Proposition 7 and 8.

Proposition 9 When search cost c is small, (i) both ascending and descending price sortings
boost consumer surplus; (ii) ascending price sorting has a larger effect on consumer surplus than

descending price sorting if and only if r > 1/2. That is,

CSA > CSD > CSR, if r > 1/2;

and CSD > CSA > CSR, if r < 1/2.

Note that total consumer surplus is a weighed average of CS0S and CS1S . Analyses in the

previous section show that as search cost c approaches zero, the optimal price distributions for all

types of sorting converge to the same limit. This implies that the limits of CS0S are also the same

for all S ∈ {R,A,D}. Thus, as long as c is small, the impact of price sorting on shoppers’surplus,
CS0S , is negligible. However, Proposition 10 states that the impact of price sorting on searchers’

surplus, CS1S , is significant and the same as that on both total welfare and total consumer surplus.

Proposition 10 When search cost c is small, we have

CS1A > CS1D > CS1R, if r > 1/2;

and CS1D > CS1A > CS1R, if r < 1/2.

15Consider that the price approaches a from below.
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While Proposition 9 is immediate due to previous results, Proposition 10 needs a detailed proof

(See Appendix). Note that searchers’ surplus CS1S has two components: searchers’ purchase

surplus, the expected benefits of the trade between firms and searchers, and searchers’total search

costs. The intuition behind our results is that when c is small, the main impact of price sorting

is to reduce the total occurrence of search costs. The effects of price sorting on firms’profits and

consumers’purchase surplus are negligible, because the optimal price distribution under each type

of sorting has the same limit, as search cost converges to zero. This also explains why price sorting

has similar impacts on total welfare and searchers’ surplus. Finally, the different effects of the

price sortings on searchers’surplus are characterized by Proposition 6.

5 Endogenizing Price Sorting

Until now we have assumed that the type of price sorting is exogenously given and known to each

party in the market. However, in many real-world situations, consumers have the option to choose

their best type of sorting. This section studies the endogenization of price sorting. As is commonly

observed, we assume that there are three types of price sorting available to consumers: random

sorting (R), ascending sorting (A), and descending sorting (D). Again, the case of random sorting

can be intepreted as searching without sorting.

The timing of the new game is as follows. Firstly, nature draws each firm’s quality type. Firms

then privately observe their own qualities, and simultaneously set their prices according to their

quality types. Consumers, at the same time, choose the type of price sorting.16 Shoppers observe

all the prices and qualities, and purchase the product that gives the highest surplus, provided

that this surplus is non-negative; otherwise they leave the market without making any purchases.

Searchers, on the other hand, observe the first free sample (p, q), and then search optimally. We

still aim at deriving a symmetric perfect Bayesian equilibrium in which high-type firms take the

same pricing strategy, and consumers choose the same type of price sorting.

Since choosing the type of price sorting becomes part of consumers’strategy, the equilibrium

of the new game should consist of the high-type firm’s price distribution F (p), the price sorting

S ∈ {R,A,D}, and a search policy such that (i) given the price sorting S and the search policy,
the price distribution F (p) is optimal for each high-type firm; (ii) given the price distribution F (p)

and the type of price sorting S, the search policy is optimal for searchers; and (iii) given the price

distribution F (p), sorting S, as well as its associated optimal search policy, is the best option among

the three, in the sense that it gives searchers the highest expected surplus.

Let FS(p) be the equilibrium price distribution when price sorting S is exogenously fixed, for

S ∈ {R,A,D}. The above definition implies that, when price sorting is endogenized, there are only
16Since all consumers are identical ex ante, it is reasonable to assume that they choose the same type of price

sorting. Note that shoppers do not care about the type of sorting because they observe all the information at no
cost.
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three equilibrium candidates (FR(p), R), (FA(p), A) and (FD(p), D).17 Moreover, to check whether

(FS(p), S) is an equilibrium, we only need to check whether sorting S gives a higher expected

consumer surplus than the other two types of sorting, given the price distribution FS(p). Our

result is given in the following proposition.

Proposition 11 When price sorting is endogenized, with small search cost c, (i) consumers never
choose random price sorting in an equilibrium; (ii) when r > 1/2, the unique equilibrium is

(FA(p), A), i.e. ascending sorting is chosen in equilibrium; (iii) when r < 1/2, the unique equilib-

rium is (FD(p), D), i.e. descending sorting is chosen in equilibrium.

Proposition 11 (i) states that consumers always take advantage of sorting options whenever

they are available. The reason is that for a given price distribution, a searcher can always get

better off by switching from random sorting to either ascending sorting or descending sorting. This

is because with small search costs, both types of price sorting can reduce the number of searches

and lower the total costs of search activities. Although the switch of price sorting will change

consumers’purchase surplus, the effect is quite small compared to the savings on the total search

costs. This reaffi rms our claim that the main impact of price sorting is on searchers’total search

costs, instead of consumers’purchase surplus and firms’profits.

To understand Proposition 11 (ii) and (iii), note that in equilibrium consumers should choose

the type of price sorting that best improves searchers’surplus. Considering its main impact, the

chosen price sorting should have a larger effect in saving the total search costs. Thus, Proposition

11 is just a restatement that ascending price sorting better saves the total consumer search costs

than descending price sorting does if and only if there are more high-type firms in the market.

6 Extension: Multiple Products in Each Sample

This paper assumes that the full product information, price and whether it is irrelavant, is not

known to the consumer unless the product is sampled. In online-shopping platforms, all the search

results are displayed in several pages. Each page reveals full product information including price

and product details. Thus, sampling the products simply means viewing the web pages according

to the sorting results. And taking another sample means clicking the "next page" button on the

website. Consumers learn all the product information when they go to the new page. Until now,

we have been assuming that each page shows only one product, just for analytical convenience. In

reality, however, more than one products are observed in each weg page. For example, Amazon.com

displays 24 products per page, with all the prices and product discriptions. People who search

for flights at Expedia.com can find 10 different flight deals in each page, which shows the origins,

destinations, travel dates and prices. The number of items displayed in each page at eBay.com can

17We have omitted the associated search policy in the expression of an equilibrium just for simplicity of notation.
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be 25, 50, 100 or 200, which is determined by consumers. In this section, we show that our main

results still hold even when multiple products are observed in each sample.

Let us reconsider the previous game by assuming that each sample consists of M products.

That is, by incurring a search cost c, searchers learn price and quality information of M products

at the same time. All other assumptions remain the same as before. We will derive the symmetric

equilibrium in which low-type firms set zero price and high-type firms take the same price strategy

FS(p;M),18 when each type of price sorting S ∈ {R,A,D} is exogenously given.

The method we use to solve the equilibrium is the same as before. We first show that consumers’

optimal search policy are fully characterized by some reservation prices, given that all high-type

firms follow the price distribution FS(p;M). The reservation price can be calculated an functions of

the price distribution. Then, we exogenously fix the reservation price(s) and solve the conditional

optimal price distribution for high-type firms. Finally, in equilibrium, the pre-given reservation

price(s) should be consistent with the obtained optimal price distribution. That is, the optimal

reservation price(s) calculated from the obtain price distribution should be exactly equal to the

pre-given reservation price(s).

6.1 Random Price Sorting

We first solve the symmetric equilibrium for random price sorting. Given the high-type firms’

price distribution FR(p;M), and the current lowest price, p, of all sampled high-quality products,

the expected benefit of sampling the next product is

φR(p;M) =

M∑
s=1

C(M, s)rs (1− r)M−s
∫ p

p
R

(p− x)dF
(s)
R (x;M), (24)

where F (n)(p) is the cumulative distribution function of the lowest of n independent random vari-

ables with the same distribution F (p).

To understand the benefit (24), note that with probability C(M, s)rs (1− r)M−s, there are s
high-quality products in the next sample. Then the lowest price of the high-quality products

has distribution F (s)R (x;M), given high-type firms’price distribution FR(p;M). Thus, each typical

component of the right-hand side of Expression (24) is the expected incremental utility from getting

a lower price in the next sample, conditional on that s of M products in the sample are high-types.

Define the reservation price p̂MR as the solution to the equation φR(p;M) = c. According to

previous analysis, the optimal stopping rule in this case is fully characterized by the reservation

price p̂MR : at any stage of the search process, consumers continue searching if and only if the current

lowest price p is above the reservation price p̂MR .

18The previous game is the case in which M = 1.
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Now we derive high-type firms’optimal price distribution FR(p;M, p̂MR ) for any given reservation

price p̂MR . A high-type firm’s demand is given as follows.

D(p) =


µ
[
1− rFR(p;M, p̂MR )

]N−1
+(1− µ)

∑ N
M
−1

t=0
M
N

[
1− rFR(p;M, p̂MR )

]M−1 (
1− rF̂MR

)mt if p < p̂MR[
1− rFR(p;M, p̂MR )

]N−1
if p > p̂MR

,

where F̂MR = FR(p̂MR ;M, p̂R) and we treat N
M as an integer for analytical convenience.

When price p is below the reservation price, searchers buy at p if and only if they reject all

the previously sampled products and price p is the lowest price in the current sample. Note that
M
N

[
1− rFR(p;M, p̂MR )

]M−1 (
1− rF̂MR

)mt
is the probability that price p is the lowest price in the

(t+ 1) th sample, and all the first t samples ahead of p are rejected by searchers.

According to the definition of the equilibrium, the optimal price distribution can be solved by

the constant profit condition πR = pD(p) for any p within the price support.

Finally, the equilibrium reservation price is solved according to the consistence condition

φR(p̂MR ;M) =
M∑
s=1

C(M, s)rs (1− r)M−s
∫ p̂MR

p
R

(p̂MR − x)dF
(s)
R (x;M, p̂MR )

= c.

6.2 Ascending Price Sorting

The equilibrium under ascending price sorting is simple. As long as the search cost c is small,

the optimal search rule under ascending price sorting is to stop searching only when a high-quality

product is observed. Thus, searchers behave like shoppers in the sense that they always purchase

the product with the highest surplus. Hence, the high-type firms’ optimal price distribution

becomes the same as that in Proposition 3.

6.3 Descending Price Sorting

Now we solve the equilibrium for descending price sorting. Suppose each high-type firm takes the

price strategy FD(p;M). Consider a state in which k pages of products have been sampled, and

the last product in the current page is of high quality with price p, for k = 1, ..., NM − 1. We call

this stage k of the search process. Next, we will calculate the expected benefit of sampling an

additional page, given the current state (p, k).

Let σ(t; p, k,M) be the probability that there are t high-quality products left, conditional on

the current state (p, k). Then, for any t = 0, 1, ..., N − kM , we can easily get

σ(t; p, k,M) =
C(N − kM, t) [rFD(p;M)]t (1− r)N−kM−t

[1− r + rFD(p;M)]N−kM
. (25)
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Given the current state (p, k), the price of each high-quality product left unsampled is a random

variable Y with distribution J(y) = FD(y;M)
FD(p;M) , for any pD ≤ y ≤ p. Let the random variable Z be

the lowest price of all the high-quality products in the next page, which is the best price in the

next sample. Note that Z = 0 when all the remaining unsampled products are low-types. When

t > 0, we have

Z =

{
Y(1) if 1 ≤ t ≤M,

Y(t−M+1) if t > M,

where Y(n) is the n − th order statistic (or, n − th smallest order statistic) of the sample formed
by t random variables, which are independently and identically distributed according to J(y). In

other words, if there are less than M high-quality products left, then the best price in the next

page is just the lowest price of all remaining high-quality products. On the other hand, if there

are more than M high-quality products left, then the best price is the M − th largest price, or
(t−M + 1)− th smallest price, of all the t prices.

Let fZ(z; t, p, k,M) be the density of Z, conditional on the state (p, k) and that there are t

high-quality products left. Then

fZ(z; t, p, k,M) =

{
t [1− J(z)]t−1 J ′(z) if 1 ≤ t ≤M,

tC(t− 1,M − 1) [1− J(z)]m−1 [J(z)]t−M J ′(z) if t > M,
(26)

where J(z) = FD(z;M)
FD(p;M) .

The expected benefit of sampling the next page, given the state (p, k) is thus

φD(p, k;M) =
N−kM∑
t=1

σ(t; p, k,M)

∫ p

p
D

(p− z)fZ(z; t, p, k,M)dz. (27)

The reservation price at stage k, p̂MD,k, is defined to be the solution to φD(p, k;M) = c, for

k = 1, ..., NM − 1. The same analysis shows that as long as the reservation prices are increasing

along with the search process, the optimal stopping rule in this case is to continue searching at stage

k if and only if the state price p is higher than the reservation price p̂MD,k, for all k = 1, ..., NM − 1.

Finally, the property of increasing reservation prices is satisfied if the total number of pages N
M is

not large.

Similar to the case of M = 1, we fix a group of reservation prices and solve the conditional

optimal price distribution for high-type firms. Again, we first derive a high-type firm’s demand, and

then solve the optimal price distribution according to the constant-profit condition. Finally, the

pre-given reservation prices should stand for the optimal stopping rule conditional on the obtained

price distribution, which gives the equilibrium. The derivation of a high-type firm’s demand is

tidious and put in the Appendix.
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Until now, we have solved the symmetric equilibrium under each type of price sorting. The

next Proposition states that our main result on welfare comparions still holds even for M > 1.

Proposition 12 With small search costs, given the type of price sorting S ∈ {R,A,D}, let TWM
S ,

ΠM
S and CSMS be total welfare, industry profit and consumer surplus, respectively, when M products

are observed in each sample. We have that

ΠM
A = ΠM

D = ΠM
R .

Moreover, if r > 1/2,

TWM
A > TWM

D > TWM
R , and CS

M
A > CSMD > CSMR ;

and if r < 1/2,

TWM
D > TWM

A > TWM
R , and CS

M
D > CSMA > CSMR .

Finally, for the case of endogenous price sorting, the market equilibrium can be derived the

same way as we did when M = 1. Proposition 13 says that our main result on the choice of price

sorting still holds when M > 1.

Proposition 13 Suppose M products are observed in each sample. Then, with small search

costs, if consumers can decide the type of price sorting, random price sorting is never selected in

equilibrium. Specificly, consumers choose ascending price sorting if r > 1/2, and choose descending

price sorting if r < 1/2.

7 Conclusion

This paper considers price sorting in a consumer search model. We have studied both ascending

and descending price sortings, which are the most commonly observed sorting options in the Web.

Either ascending or descending price sorting can be applied before the sampling process. Consumers

search sequentially for products with two types of qualities. We allow a fraction of consumers to

have zero search costs, and all other consumers have the same positive search cost. Price dispersion

exists in the unique symmetric equilibrium. We find that, when the search cost is small, using

price sorting will improve both total welfare and consumer surplus, but have no impact on industry

profits. Moreover, if consumers can choose the type of price sorting for their own interests,

ascending price sorting (or descending price sorting, respectively) will be chosen if there are more

high-quality products (or low-quality products, respectively) in the market.

Our analysis has been restricted to the case in which the cost of sampling a product is small.

The situation may be different if the search cost becomes large. Take the comparisons of total
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welfare for example. With large search costs, searchers may accept any high-quality product, and

only continue searching when low-quality products are observed. This means search never takes

place under descending price sorting. On the other hand, compared to random price sorting,

consumers search more often under ascending price sorting since low-quality products are always

first sampled. As a result, ascending price sorting no longer saves consumers’total search costs

and lowers total welfare compared to random price sorting. When the search cost becomes even

higher, no search would ever take place under all types of price sorting, so that consumers always

purchase the first product they sample. In this case, compared to random price sorting, total

welfare is improved under descending price sorting, but decreased under ascending price sorting.

Although the examples of online purchases fit the small search cost assumption, there are many

other situations in which search costs are large. It will be a desirable extension to consider those

situations.

As most of the search literature did, this paper considers an optimal search policy that is of a

simple form. The only choice consumers have to make is whether to continue the search process. To

be precise, when deciding to search on, consumers do not have to determine which product should

be sampled next. This is because the search order is fully determined by firms’pricing strategies

and the type of sorting. The derivation of this simple search policy is based on two assumptions:

first, consumers observe neither price nor quality before a product is sampled; second, all products

should be sampled in the same order as they are displayed according to the type of price sorting.

The first assumption does not hold in situations where only prices are displayed in the web pages

after the products are sorted. Thus, consumers not only choose whether or not the search on, but

also decide which product to sample based on the price information. Likewise, without the second

assumption, consumers will have to choose which page to go to whenever deciding to search on,

based on the samples they have already observed. Consumers’search behaviors in those situations

are more complex, but deserve studying in the future.

Finally, there are other types of sorting options available for consumers during the online pur-

chases. For example, many commerce web sites allow consumers to sort their products by popular-

ity or average customer review. There is no doubt that these sorting tools also play important roles

in affecting consumer choices and product prices. The impacts of these sortings may be studied in

the context of dynamic games, which is left to future work.

8 Appendix

In this section, we provide technical proofs for all the lemmas and propositions in the main text.

Proof of Lemma 1. It is obvious that the searcher will continue searching whenever pD,n ≥ p̂D,n,
where pD,n is the observed price at stage n, for any n = 1, ..., N − 1. We now prove by induction

that it is optimal for the searcher to stop searching at stage n whenever pD,n < p̂D,n. Our result
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is obviously true when n = N − 1. Suppose it is true for all stages N − 1, N − 2, ..., N − k, and
consider stage N − k − 1, at which pD,N−k−1 < p̂D,N−k−1. If the searcher keeps sampling at

stage N − k − 1, since he will stop searching in the next stage (due to the inductive hypothesis,

the increasing order of reservation prices and the decreasing order of observed prices), the total

expected benefits of doing so is exactly equal to φD(pD,N−k−1, N−k−1), which is below the search

cost c since pD,N−k−1 < p̂D,N−k−1. Thus, the searcher would be better off if he chose to stop

searching at stage N − k − 1, which completes our proof.

Proof of Lemma 2. Expression (2) can be rewritten as

φD(p, n) =

∫ p

p
D

[(
1− r + rFD(x)

1− r + rFD(p)

)N−n
−
(

1− r
1− r + rFD(p)

)N−n]
dx.

Define

h(m;x, p) =

(
1− r + rFD(x)

1− r + rFD(p)

)m
−
(

1− r
1− r + rFD(p)

)m
.

Then we have
∂φD(p, n)

∂n
= −

∫ p

p
D

∂h(m;x, p)

∂m
|m=N−ndx.

Thus it is suffi cient to prove that there exists a positive number N such that as long as m < N ,
∂h(m;x,p)

∂m > 0 for any x and p. Note that

∂h(m;x, p)

∂m
= Am

{(
1 +

y

A

)m
ln (A+ y)− lnA

}
≡ k(m;A, y),

where A = 1−r
1−r+rFD(p) ∈ [1− r, 1] and y = rFD(x)

1−r+rFD(p) ∈ [0, 1−A]. We have that

∂k(m;A, y)

∂y
= (A+ y)m−1 [1 +m ln (A+ y)]

> (A+ y)m−1 [1 +m lnA] .

Define N = − 1
ln(1−r) . Then, as long as m < N , we have that 1 +m lnA > 0, where we have used

the fact that 1 − r ≤ A ≤ 1. This means that ∂k(m;A,y)
∂y > 0 for all y ∈ [0, 1 − A]. Moreover, it is

easy to verify that k(m;A, y = 0) = 0 and k(m;A, y = 1 − A) = −Am lnA > 0. Thus, we have

that ∂h(m;x,p)∂m = k(m;A, y) ≥ 0 for all m,x and p as long as m < N , which completes our proof.

Proof of Lemma 3. First of all, FR(p; p̂R) cannot have an atom at p = 0 because a high-type

firm can guarantee itself a positive expected profit by charging a price p ∈ (0, a). By doing so, the

high-type firm yields a positive surplus, so that all the shoppers will buy from it as long as all other

firms are low-type, which happens with probability (1− r)N−1. To prove that there are no atoms
at positive prices, suppose the contrary. Then by slightly undercutting the atom, the firm can

discretely increase its demand from the shoppers without losing any demand from the searchers,
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which obviously contradicts the optimality of FR(p; p̂R).

Proof of Lemma 4. For part (i), suppose pR < p̂R, then consider p′ ∈ (pR, p̂R). Note that

p′ gives the firm the same demand as pR does, thus making a higher profit, contradiction. On

the other hand, suppose p̂R < pR < a, similar to the previous argument, any price p′ ∈ (pR, a) is

strictly better than pR, which is also impossible. Hence, either pR = p̂R or pR = a. For part (ii),

suppose otherwise, let (α, β) ⊂ [p
R
, pR] be the largest such gap. Then charging price β yields the

same demand for the firm as α does. Since β > α, β will make larger profits than α, contradiction.

Proof of Proposition 1. Proposition 1 follows immediately from the condition πR = pD(p) and

the demand function (3).

Before giving a proof for Proposition 2, we find the following analyses very useful.

Equation (9) can be rewritten as

r

∫ p̂R

p
R

F ∗R(x; p̂R)dx = c. (28)

Expressions (5)-(8) imply that all F ∗R(x; p̂R), p
R
, p̂R and p′R can be expressed as functions of F̂R.

Thus, the left-hand side of (28) depends only on F̂R, which in turn can be expressed as a function of

c. Obviously, as F̂R → 0, all p
R
, p̂R and p′R → πR, so that r

∫ p̂R
p
R

F ∗R(x; p̂R)dx→ 0. Moreover, due

to (5)-(8), as F̂R → 0, we have that
∂p

R

∂F̂R
→ 1

2 (N − 1)πRr (1− µ), ∂p̂R
∂F̂R
→ 1

2 (N − 1)πRr (1 + µ),
∂p′R
∂F̂R
→ (N − 1)πRr, and

∂F ∗R(x;p̂R)

∂F̂R
→ −1−µ2µ for any x ∈ [p

R
, p̂R].

Taking derivative of the left-hand side of (28) with respect to F̂R gives

∂
∫ p̂R
p
R

F ∗R(x; p̂R)dx

∂F̂R
= F̂R

∂p̂R

∂F̂R
+

∫ p̂R

p
R

∂F ∗R(x; p̂R)

∂F̂R
dx

= F̂R

 ∂p̂R
∂F̂R

+

∫ p̂R
p
R

∂F ∗R(x;p̂R)

∂F̂R
dx

F̂R

 .
Since

lim
F̂R→0

∂p̂R

∂F̂R
=

1

2
(N − 1)πRr (1 + µ)

and

lim
F̂R→0

∫ p̂R
p
R

∂F ∗R(x;p̂R)

∂F̂R
dx

F̂R
= lim

F̂R→0

− (1− µ)

2µ

(
∂p̂R

∂F̂R
−
∂p

R

∂F̂R

)
= −1

2
(N − 1)πRr (1− µ) ,
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the above expression implies that

lim
F̂R→0

∂
∫ p̂R
p
R

F ∗R(x; p̂R)dx

∂F̂R

1

F̂R
= (N − 1)πRrµ. (29)

Thus, when F̂R is suffi ciently small, the left-hand side of (28) is strictly increasing in F̂R. This

means that, there is always a unique F̂R which solves Equation (28) for small search costs.

The above useful results are summarized as follows.

Result 1: As c→ 0, we have that

(i)

∂p
R

∂F̂R
→ 1

2
(N − 1)πRr (1− µ) ,

∂p̂R

∂F̂R
→ 1

2
(N − 1)πRr (1 + µ) ,

∂p′R
∂F̂R

→ (N − 1)πRr;

(ii) when x ∈ [p
R
, p̂R], we have

∂F ∗R(x; p̂R)

∂F̂R
→ −1− µ

2µ
;

(iii) finally, we have

∂F̂R
∂c

F̂R → 1

(N − 1)πRr2µ
,

c

F̂ 2R
→ (N − 1)πRr

2µ

2
,

c

F̂R
→ 0,

∂F̂R
∂c

c → 0.

Proof. Parts (i) and (ii) are obvious. For (iii), taking derivatives of both sides of (28) with respect
to c gives

rF̂R
∂p̂R

∂F̂R

∂F̂R
∂c

+ r
∂F̂R
∂c

∫ p̂R

p
R

∂F ∗R(x; p̂R)

∂F̂R
dx = 1,

or

r
∂
∫ p̂R
p
R

F ∗R(x; p̂R)dx

∂F̂R

∂F̂R
∂c

= 1.
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According to (29), the above expression gives the first result:

∂F̂R
∂c

F̂R →
1

(N − 1)πRr2µ
.

For the second result, note that

lim
c→0

c

F̂ 2R
= lim

c→0

r
∫ p̂R
p
R

F ∗R(x; p̂R)dx

F̂ 2R

= r lim
F̂R→0

∂
∫ p̂R
p
R

F ∗R(x; p̂R)dx/∂F̂R

2F̂R

=
r

2
lim
F̂R→0

F̂R
∂p̂R
∂F̂R

+
∫ p̂R
p
R

∂F ∗R(x;p̂R)

∂F̂R
dx

F̂R

=
r

2
lim
F̂R→0

 ∂p̂R
∂F̂R

+

∫ p̂R
p
R

∂F ∗R(x;p̂R)

∂F̂R
dx

F̂R


=

(N − 1)πRr
2µ

2
,

where the second equality is due to L’Hospital rule.

Finally, the third and fourth results of part (iii) are direct consequences of the the first two

since limc→0 F̂R = 0.

Proof of Proposition 2. The above analysis has shown that the solution of Equation (9)

always exists and is unique for small search costs. In addition, the equilibrium reservation price

p̂R increases with the search cost because
∂p

R
∂c =

∂p
R

∂F̂R

∂F̂R
∂c > 0 due to Result 1.

Proof of Lemma 5. The proof is similar to that of Lemma 3. Firstly, the equilibrium price

distribution cannot have an atom at price zero because each high-type firm’s expected profit is

strictly positive. Secondly, to prove that there is no atom at any positive price, suppose the

contrary. Then by slightly undercutting the atom, a high-type firm not only discretely increases

its demand from the shoppers, but also increases its demand from the searchers because a lower

price means being sampled earlier and having a higher surplus. Thus, the high-type firm can have

a strictly higher profit by doing so, which obviously contradicts the optimality of FA(p).

Proof of Lemma 6. The proof is similar to that of Lemma 4. Suppose pA < a, then any

price p′ ∈ (pA, a) gives a high-type firm the same demand as pA does, thus making a higher profit,

contradiction. To show that there is no gap in the equilibrium price support, suppose otherwise

and let (α, β) ⊂ [p
A
, pA] be the largest such gap. Then charging price β yields the same demand

for the firm as α does. Since β > α, β will make larger profits than α, contradiction.

Proof of Proposition 3. When c < φA, searchers never stop sampling until a high-quality

product is observed. Due to the increasing order of prices, each searcher ends up purchasing the
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high-quality product with the lowest price, and behaves exactly the same as a shopper. Thus,

Expressions (12) and (13) follow immediately from the condition πA = pD(p) and the demand

function (10).

Proof of Lemma 7. Suppose all high-type firms set the price p = a. Thus, both types of firms

offer a surplus of zero, and searchers will never sample the next product. The expected profit of a

high-type firm is given by

πD(a) = a

 µ

N
+

(1− µ)
[
1− (1− r)N

]
Nr

 ,

where µ
N and

(1−µ)[1−(1−r)N ]
Nr are the demands from shoppers and searchers, respectively. To

understand the demand from searchers, note that with probability C(N − 1, k)rk (1− r)N−1−k,
there are k other high-type firms in the market. In this case, all the (k + 1) high-type firms set

price p = a, and other low-type firms set zero prices. Due to the decreasing order of prices, each

searcher randomly purchases from the (k + 1) high-type firms. Thus, the high-type firm’s total

demand from searchers is given by

(1− µ)
N−1∑
k=0

C(N − 1, k)rk (1− r)N−1−k 1

k + 1

= (1− µ)
N−1∑
k=0

(N − 1)!

(N − 1− k)!k!
rk (1− r)N−1−k 1

k + 1

=
(1− µ)

rN

N−1∑
k=0

N !

(N − 1− k)! (k + 1)!
rk+1 (1− r)N−1−k

=
(1− µ)

rN

N−1∑
k=0

C(N, k + 1)rk+1 (1− r)N−1−k

=
(1− µ)

rN

[
1− (1− r)N

]
.

Now we check that for high-type firms, any price deviation p < a is not profitable. Given that

all other high-type firms set price p = a, a high-type firm that charges p < a will earn a profit of

πD(p) = p[µ+ (1− µ)(1− r)N−1].
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We have that

πD(a)− πD(p) > a

 µ

N
+

(1− µ)
[
1− (1− r)N

]
Nr


−a[µ+ (1− µ)(1− r)N−1]

= A

[
1− (1− r)N − rN (1− r)N−1

1− (1− r)N − rN (1− r)N−1 + r(N − 1)
− µ

]
,

where A =
a[1−(1−r)N−rN(1−r)N−1+r(N−1)]

rN > 0.

Obviously, if µ ≤ 1−(1−r)N−rN(1−r)N−1

1−(1−r)N−rN(1−r)N−1+r(N−1) , then πD(a)−πD(p) > 0 so that any p < a is not

a profitable deviation, which completes our proof.

Proof of Lemma 8. The key point is that we focus on the small-search-cost situations so that

search takes place at each stage as long as the observed price is high enough. Thus, the upper

bound of price support pD should be above the highest reservation price p̂D,N−1. This means,

charging pD gives a high-type firm a demand (1− r)N−1 because consumers will purchase from this
firm if and only if it is the only high-type firm in the market. Suppose pD < a, since any high-type

firm can have the same demand (1− r)N−1 by charging price a, increasing the price from pD to a

becomes a strictly profitable deviation.

Proof of Proposition 4. Proposition 4 follows immediately from the demand function (18) and

the condition that πD = pD(p) for all p.

According to Proposition 4, the optimal price distribution function F ∗D(p; p̂D) and the elements

p
D
, p̂D,n and p′D,n can be expressed as functions of F̂D,1, F̂D,2,..., F̂D,N−1, for n = 1, ..., N − 1.

More precisely, for any n and p ∈ (p̂D,n, p̂D,n+1], FD(p; p̂D) is the solution of the following equation.

πD
p

= µ [1− rFD(p; p̂D)]N−1

+ (1− µ)

n−1∑
k=0

C(N − 1, k) (1− r)N−1−k [r − rFD(p; p̂D)]k

+ (1− µ)C(N − 1, n) (1− r + rFD(p; p̂D))N−1−n [r − rFD(p; p̂D)]n

+ (1− µ)
N−1∑
k=n+1

C(N − 1, k) (1− r + rFD(p; p̂D))N−1−k
[
r − rF̂D,k

]k
, (30)

moreover, we have that

πD
p
D

= µ+ (1− µ)

N−1∑
k=0

C(N − 1, k) (1− r)N−1−k
[
r − rF̂D,k

]k
, (31)
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πD
p′D,n

= µ
[
1− rF̂D,n

]N−1
+ (1− µ)

n−1∑
k=0

C(N − 1, k) (1− r)N−1−k
[
r − rF̂D,n

]k
+ (1− µ)C(N − 1, n)

(
1− r + rF̂D,n

)N−1−n [
r − rF̂D,n

]n
+ (1− µ)

N−1∑
k=n+1

C(N − 1, k)
(

1− r + rF̂D,n

)N−1−k [
r − rF̂D,k

]k
, (32)

πD
p̂D,n

= µ
[
1− rF̂D,n

]N−1
+ (1− µ)

n−1∑
k=0

C(N − 1, k) (1− r)N−1−k
[
r − rF̂D,n

]k
+ (1− µ)C(N − 1, n)

(
1− r + rF̂D,n

)N−1−n [
r − rF̂D,n

]n
+ (1− µ)

N−1∑
k=n+1

C(N − 1, k)
(

1− r + rF̂D,n

)N−1−k [
r − rF̂D,k

]k
+ (1− µ)C(N − 1, n− 1)

(
r − rF̂D,n

)n−1 [(
1− r + rF̂D,n

)N−n
− (1− r)N−n

]
. (33)

Using the above expressions, it is not diffi cult to verify the following results.

Result 2: As F̂D,1, F̂D,2, ..., F̂D,N−1 → 0, we have that,

(i) for any n = 1, ..., N − 1,

∂p
D

∂F̂D,n
→ πD (1− µ)nC(N − 1, n) (1− r)N−1−n rn; (34)

(ii) for any n = 1, ..., N − 1 and m ≥ n+ 1,

∂p′D,n

∂F̂D,n
→ πDr (N − 1)

[
1− 2 (1− µ)

N−1∑
k=n+1

C(N − 2, k − 1) (1− r)N−k−1 rk−1
]
, (35)

∂p′D,n

∂F̂D,m
→

∂p
D

∂F̂D,m
→ πD (1− µ)mC(N − 1,m) (1− r)N−1−m rm; (36)
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(iii) for any n = 1, ..., N − 1 and m ≥ n+ 1,

∂p̂D,n

∂F̂D,n
→

∂p′D,n

∂F̂D,n
−

∂p
D

∂F̂D,n

→ πDr (N − 1)

[
1− 2 (1− µ)

N−1∑
k=n+1

C(N − 2, k − 1) (1− r)N−k−1 rk−1
]

−πD (1− µ)nC(N − 1, n) (1− r)N−1−n rn, (37)

∂p̂D,n

∂F̂D,m
→

∂p
D

∂F̂D,m
→ πD (1− µ)mC(N − 1,m) (1− r)N−1−m rm; (38)

(iv) for any n = 1, ..., N − 1,

∂p̂D,n+1

∂F̂D,n+1
−

∂p
D

∂F̂D,n+1
→

∂p′D,n

∂F̂D,n
. (39)

(v) for any n, any p ∈ (p̂D,n, p̂D,n+1] and m ≥ n+ 1, we have

∂F ∗D(p; p̂D)

∂F̂D,m
→ −

∂p
D

∂F̂D,m

∂p′D,n
∂F̂D,n

. (40)

According to (39), for any p ∈ (p̂D,n, p̂D,n+1], we have

∂F ∗D(p; p̂D)

∂F̂D,n+1
→ −

∂p
D

∂F̂D,n+1

∂p′D,n
∂F̂D,n

→
− ∂p

D

∂F̂D,n+1

∂p̂D,n+1

∂F̂D,n+1
− ∂p

D

∂F̂D,n+1

. (41)

Note that (23) gives an equation system withN−1 equations andN−1 variables (F̂D,1, F̂D,2, ..., F̂D,N−1).

For any n = 1, ..., N − 1, define

Ψn(F̂D,1, F̂D,2, ..., F̂D,N−1) ≡
∫ p̂D,n

p
D

(p̂D,n − x)d

(
1− r + rF ∗D(x; p̂D)

1− r + rF̂D,n

)N−n
.

Taking derivatives of both sides of (23) with respect to c gives that

N−1∑
m=1

∂Ψn

∂F̂D,m

∂F̂D,m
∂c

= 1 for all n. (42)

Using Result 2, it is not diffi cult to find that, for any n,m = 1, ..., N−1, as F̂D,1, F̂D,2, ..., F̂D,N−1 →
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0,

∂Ψn

∂F̂D,m

1

F̂D,m
→


− r(N−n)

1−r
∂p

D

∂F̂D,m
if m < n;

r(N−n)
1−r

∂(p̂D,m−pD)
∂F̂D,m

if m = n;

r(N−n)
1−r

∂p
D

∂F̂D,m
if m > n.

(43)

For notational ease, we use F̂D → 0 to represent F̂D,1, F̂D,2, ..., F̂D,N−1 → 0. Define

an,m ≡ lim
F̂D→0

∂Ψn

∂F̂D,m

1

F̂D,m
,

bm ≡ lim
F̂D→0

∂F̂D,m
∂c

F̂D,m,

then (42) means
N−1∑
m=1

an,mbm = 1 for all n. (44)

Let matrix A be the (N − 1) × (N − 1) square matrix with an,m as the element in the n − th
row and m− th column. According to (43), it is not diffi cult to verify that matrix A is invertible
so that there exists a unique set of (b1, ..., bN−1) that solves (44), which in turn proves that the

solution of (23),
(
F̂D,1, F̂D,2, ..., F̂D,N−1

)
, uniquely exists when the search cost c is approaching

zero.

Proof of Proposition 5. Since (p̂D,1, ..., p̂D,N−1) are functions of
(
F̂D,1, F̂D,2, ..., F̂D,N−1

)
, the

above analysis simply shows that there exists a unique set of reservation prices (p̂D,1, ..., p̂D,N−1)

that solves Equation (23).

Proof of Proposition 6. Under random price sorting, there is probability rF̂R that each sampled

product is a Type I product, that is, the product is of high quality and with a price lower than

the reservation price, in which case the searcher stops sampling and make a purchase immediately.

There is probability 1− rF̂R that each sampled product is a Type II product, that is, the product
is either of low quality, or of high quality but with a price higher than the reservation price, in

which case the searcher will continue searching.

Thus, the probability that m searches take place19 is
(

1− rF̂R
)m

rF̂R, for m = 0, 1, ..., N − 2.

This is because this happens when the first m samples are of Type II, and the (m+ 1) th sample

is of Type I. Finally, the probability that N − 1 searches take place is
(

1− rF̂R
)N−1

. This is

because a searcher sample all the products if and only if all the first N − 1 samples are of Type II.

19We have assumed that the first sample is free. And the total number of searches we are exploring for each type
of sorting is defined to be the number of samples other than the first one.
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Then the expected number of searches under random price sorting is given by

NR =

N−2∑
m=1

m
(

1− rF̂R
)m

rF̂R + (N − 1)
(

1− rF̂R
)N−1

=
1−

(
1− rF̂R

)N
rF̂R

− 1,

which converges to N − 1 as c→ 0.

Under ascending price sorting, for small search costs, a searcher will sample all the low-quality

products and purchse the high-quality product with the lowest price. So the probability that

a searcher makes m samples20 is C(N,m) (1− r)m rN−m because it happens when m out of N

products are of low quality, for m = 0, 1, ..., N − 2. The probability that the searcher makes N − 1

samples (i.e., sample all the products) is C(N,N − 1) (1− r)N−1 r + (1− r)N because it happens

when there are N − 1 or N low-quality products. Thus, the expected number of searches under

ascending price sorting is

NA =
N−1∑
m=1

mC(N,m) (1− r)m rN−m + (N − 1) (1− r)N

=
N∑
m=1

mC(N,m) (1− r)m rN−m − (1− r)N

= N (1− r)
N∑
m=1

C(N − 1,m− 1) (1− r)m−1 rN−m − (1− r)N

= N (1− r)− (1− r)N ,

where the third equality comes from the fact that mC(N,m) = NC(N − 1,m − 1) and the last

comes from the fact that
∑N

m=1C(N − 1,m− 1) (1− r)m−1 rN−m = 1.

Finally, under descending price sorting, let p(n) be the n− th highest price out of all N prices.

Given the reservation prices 0 < p̂D,1 ≤ p̂D,2 ≤ ... ≤ p̂D,N−1 < a and the optimal stopping

rule, for any m = 1, 2, ..., N − 2, the searcher makes m samples if and only if p(m) > p̂D,m and

p(m+1) < p̂D,m+1. On the other hand, N − 1 searches take place if and only if p(N−1) > p̂D,N−1.

Define αm to be the probability that m searches take place, for m = 1, 2, ..., N − 1. Then, as the

search cost c→ 0, p̂D,n → p
D
for all n, and hence we have that αm → C(N,m) (1− r)N−m rm for

m = 1, 2, ..., N − 2 and αN−1 → C(N,N − 1) (1− r) rN−1 + rN . The expected number of searches

under descending price sorting is

lim
c→0

ND =
N−1∑
m=1

mC(N,m) (1− r)N−m rm + (N − 1) rN

= Nr − rN ,
20The first sample is not counted.
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where the last equality follows the same way as that of the derivation of NA.

Define h(r) ≡ Nr − rN , for all r ∈ [0, 1]. The above results can be summarized as

lim
c→0

NR = h(1), lim
c→0

NA = h(1− r), and lim
c→0

ND = h(r).

It is obvious that h′(r) > 0. This implies that

h(1) > h(r) and h(1) > h(1− r)

and

h(r) > h(1− r) if and only r > 1/2,

which completes our proof.

Result 3: Given any high-type firm’s price distribution, when search cost c is small, compared
to random price sorting, consumers search less often under both ascending and descending price

sortings. Moreover, consumers search least frequently under ascending (or descending, respectively)

price sorting if r > 1/2 (or r < 1/2, respectively).

Proof. The proof is the similar to that of Proposition 6. The basic logic is that, given the

probability r, as the search cost c approaches zero, the expected number of searches under random

price sorting is always N − 1. In other words, searchers will sample all the firms in the market.

However, under ascending price sorting, the expected number of searches is the expected number

of low-type firms in the market, N (1− r) − (1− r)N . This is because searchers stop sampling
only after all the low-type firms are sampled. Similarly, under descending price sorting, the

expected number of searches is equal to the expected number of high-type firms in the market,

Nr − rN , because searchers stop when they just finishing sampling all the high-type firms. Thus,
the comparison of the total number of searches follows exactly the same way as that in Proposition

6.

Proof of Proposition 7. When search costs are small, both shoppers and searchers always end

up purchasing a high-quality product as long as there is at least one high-type firm in the market.

This means that the surplus of trade under each type of price sorting is the same and equal to

a
[
1− (1− r)N

]
. The total welfare under price sorting S ∈ {R,A,D} is given by

TWS = a
[
1− (1− r)N

]
− cNS .

Hence, Proposition 7 follows immediately from Proposition 6.

Proof of Proposition 8. Proposition 8 follows from the facts that πR = πA = πD = a(1−r)N−1

as long as the search cost is small, and that low-type firms always earn zero profit, regardless of

the types of price sorting.
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Proof of Proposition 9. Proposition 9 simply follows Proposition 7 and 8.

Proof of Proposition 10. Since CSS = µCS0S + (1− µ)CS1S for all S ∈ {R,A,D}, using
Proposition 6, it suffi ces to show that

lim
c→0

CS0A − CS0R
c

= 0 and lim
c→0

CS0D − CS0R
c

= 0.

Since CS0A does not depend on c (for small c) and

lim
c→0

CS0R = lim
c→0

CS0D = CS0A,

it suffi ces to show that

lim
c→0

∂CS0R
∂c

= 0 and lim
c→0

∂CS0D
∂c

= 0.

The shopper’s surplus under random price sorting is given as follows.

CS0R =

N∑
m=1

C(N,m) (1− r)N−m rm
∫ a

p
R

(a− x) dGR,m(x)

=

N∑
m=1

C(N,m) (1− r)N−m rm
∫ a

p
R

GR,m(x)dx,

where GR,m(x) = 1− [1− F ∗R(x)]m represents the cumulative distribution function of the smallest

order statistic with m samples, since shoppers always purchase from the lowest-priced firm. To

understand the above expression, note that the typical term of the right-hand side

C(N,m) (1− r)N−m rm
∫ a

p
R

(a− x) dGR,m(x)

represents the shopper’s expected surplus when there are m high-type firms in the market.

Using Result 1, one can easily derive that, for any m = 1, ..., N , as F̂R → 0,

∂
∫ a
p
R

GR,m(x)dx

∂c
=

∫ a

p
R

∂GR,m(x)

∂c
dx

=
∂F̂R
∂c

∫ p̂R

p
R

m [1− F ∗R(x)]m−1
∂F ∗R(x)

∂F̂R
dx

+
∂F̂R
∂c

(
p′R − p̂R

) ∂ [1− (1− F̂R
)m]

∂F̂R

→ ∂F̂R
∂c

F̂R{−
p̂R − pR
F̂R

m (1− µ)

2µ
+
m (p′R − p̂R)

F̂R
}

→ 0,

which implies that limc→0
∂CS0R
∂c = 0.
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The shopper’s surplus under descending price sorting can be derived in the similar way as that

under random price sorting. We have that

CS0D =

N∑
m=1

C(N,m) (1− r)N−m rm
∫ a

p
D

(a− x) dGD,m(x)

=

N∑
m=1

C(N,m) (1− r)N−m rm
∫ a

p
D

GD,m(x)dx,

where GD,m(x) = 1− [1− F ∗D(x)]m. It suffi ces to show that, as c→ 0,
∂
∫ a
p
D
GD,m(x)dx

∂c → 0 for any

m.

Using Result 2, one can verify that for any m = 1, ..., N ,

∂
∫ a
p
D

GD,m(x)dx

∂c
=

∫ a

p
D

∂GD,m(x)

∂c
dx

=

N−1∑
n=1

∫ p̂D,n

p′D,n−1

m [1− F ∗D(x)]m−1
∂F ∗D(x)

∂c
dx

+

N−1∑
n=1

∂F̂D,n
∂c

(
p′D,n − p̂D,n

)
m
[
1− F̂D,n

]m−1
.

As c→ 0, we have that

∂
∫ a
p
D

GD,m(x)dx

∂c
→

N−1∑
n=1

∫ p̂D,n

p′D,n−1

m [1− F ∗D(x)]m−1
[
N−1∑
m=n

∂F ∗D(x)

∂F̂D,m

∂F̂D,m
∂c

]
dx

+
N−1∑
n=1

∂F̂D,n
∂c

m
(
p′D,n − p̂D,n

)
→

N−1∑
n=1

m
(
p̂D,n − p′D,n−1

)
F̂D,n

[
N−1∑
m=n

∂F ∗D(p′D,n−1)

∂F̂D,m

∂F̂D,m
∂c

F̂D,n

]

+
N−1∑
n=1

∂F̂D,n
∂c

m
(
p′D,n − p̂D,n

)
→

N−1∑
n=1

m
(
p̂D,n − p′D,n−1

)
F̂D,n

∂F ∗D(p′D,n−1)

∂F̂D,n

∂F̂D,n
∂c

F̂D,n

+
N−1∑
n=1

∂F̂D,n
∂c

F̂D,n
m
(
p′D,n − p̂D,n

)
F̂D,n

.
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Thus,

∂
∫ a
p
D

GD,m(x)dx

∂c
→

N−1∑
n=1

[
p̂D,n − p′D,n−1

F̂D,n

∂F ∗D(p′D,n−1)

∂F̂D,n
+
p′D,n − p̂D,n

F̂D,n

]
m
∂F̂D,n
∂c

F̂D,n

→
N−1∑
n=1

∂
(
p̂D,n − p′D,n−1

)
∂F̂D,n

∂F ∗D(p′D,n−1)

∂F̂D,n
+
∂
(
p′D,n − p̂D,n

)
∂F̂D,n

m∂F̂D,n
∂c

F̂D,n

→
N−1∑
n=1

∂
(
p̂D,n − pD

)
∂F̂D,n

∂F ∗D(p′D,n−1)

∂F̂D,n
+

∂p
D

∂F̂D,n

m∂F̂D,n
∂c

F̂D,n

→ 0,

where p′D,0 ≡ pD and the last step follows from the fact that

∂F ∗D(p′D,n−1)

∂F̂D,n
→

− ∂p
D

∂F̂D,n

∂p̂D,n

∂F̂D,n
− ∂p

D

∂F̂D,n

,

which is due to (41). Thus, we have proved that limc→0
∂CS0D
∂c = 0, which completes the proof of

Proposition 10.

Proof of Proposition 11. For part (i), given that the search cost is approaching zero, and that

all high-type firms are following the optimal price distribution FR(p), searchers can always become

strictly better off by switching from random price sorting to ascending price sorting. Firstly, by

doing so searchers can maximize their purchase surplus because they end up paying the lowest

price. Secondly, ascending price sorting saves the total search costs because the total expected

number of searches is smaller under ascending price sorting than under random price sorting, as is

shown in Result 3. Thus, random price sorting is never part of equilibrium.

For part (ii), the analysis is similar to that for part (i). When r > 1/2, according to Result 3,

as the search cost approaches zero, ascending price sorting is the best sorting option for searchers

for any given price distributions. This is because it not only gives the highest purchase surplus

(searchers behave like shoppers), but also gives the lowest total search cost (searchers search least

frequently). This proves that the only equilibrium should be (FA(p), A).

For part (iii), suppose r < 1/2, and the search cost approaches zero. To prove that (FD(p), D)

is the unique equilibrium, we have to prove two statements: (1) given the high-type firm’s price

distribution FD(p), descending price sorting is better than ascending price sorting for searchers; (2)

given the price distribution FA(p), descending price sorting is better than ascending price sorting.

Now we prove statement (1). Given the price distribution FD(p), let CS1DD and CS1DA be

searcher’s total surplus under descending price sorting and ascending price sorting, respectively;

let CS0D be the total surplus for shoppers.21 And let NDD and NDA be the expected number of

21Shoppers do not care the type of price sorting since they always buy from the lowest-priced high-type firm.
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searches under descending price sorting and ascending price sorting, respectively. Likewise, define

CS1AD, CS
1
AA, CS

0
A, NAD and NAA as the counterparts when the given price distribution is FA(p).

To understand the notations, for the superscripts, 1 stands for "searcher" and 0 for "shopper"; for

the subscripts, the first letter S ∈ {A,D} stands for the given price distribution FS(p), and the

second letter S′ ∈ {A,D} stands for the type of price sorting chosen by searchers.
Since searchers who use descending price sorting make the same purchases as shoppers do, we

have

CS1DA = CS0D − cNDA

CS1AA = CS0A − cNAA.

Moreover, we have

lim
c→0

NDA = lim
c→0

NAA = N (1− r)− (1− r)N ,

which implies that

lim
c→0

CS1DA − CS1AA
c

= lim
c→0

CS0D − CS0A
c

= 0,

according to the proof of Proposition 10.

Thus,

lim
c→0

CS1DD − CS1DA
c

= lim
c→0

CS1DD − CS1AA
c

> 0,

due to Proposition 10, which proves statement (1).

Finally, we prove statement (2). We take the price distribution FA(p) as given. According to

the previous analyses, the searcher’s optimal stopping rule under descending price sorting can be

characterized by a group of reservation prices: p̂1 ≤ p̂2 ≤ ... ≤ p̂N−1, where p̂n solves∫ p̂n

p
A

(p̂n − x)d

(
1− r + rFA(x)

1− r + rFA(p̂n)

)N−n
= c, for n = 1, ..., N − 1.

Especially, the reservation price at stage N − 1, p̂N−1, satisfies that∫ p̂N−1

p
A

(p̂N−1 − x)d

(
1− r + rFA(x)

1− r + rFA(p̂N−1)

)
= c,

or

r

∫ p̂N−1

p
A

FA(x)dx = c [1− r + rFA(p̂N−1)] . (45)

By taking the above optimal stopping rule, the searcher’s expected surplus under descending price

sorting is CS1AD.

Now consider the following suboptimal searching strategy under descending price sorting: at
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any stage, a searcher continues sampling if and only if the current price is higher than p̂N−1, which

is given in (45). In other words, searchers behave as if the reservation prices at all stages are

the same and equal to p̂N−1. Let CŜ1AD and N̂AD be the searcher’s expected surplus and the

expected number of searches under this stopping rule, respectively. The suboptimality of the

search strategy implies that CŜ1AD ≤ CS1AD. Thus, to prove statement (2), it is suffi cient to show
that CŜ1AD > CS1AA as long as the search cost is small, or

lim
c→0

CŜ1AD − CS1AA
c

> 0.

Similar to the proof of Proposition 6, one can easily see that

lim
c→0

N̂AD = lim
c→0

NAD = Nr − rN

< N (1− r)− (1− r)N

= lim
c→0

NAA, when r < 1/2.

Under the above suboptimal stopping rule, we have that

CŜ1AD =
N∑
m=1

C(N,m) (1− r)N−m rm{
∫ a

p̂N−1

(a− x) dGm(x) +

m∑
s=1

C(m, s) (1− FA(p̂N−1))
m−s

∫ p̂N−1

p
A

(a− x) dHs(x)}

−cN̂AD,

where Gn(x) = 1− [1− FA(x)]n and Hn(x) = [FA (x)]n, representing the distribution functions for

the smallest order statistic and the largest order statistic for a sample of size n, respectively.

It is easy to express CS1AA as

CS1AA =
N∑
m=1

C(N,m) (1− r)N−m rm
∫ a

p
A

(a− x) dGm(x)− cNAA.

Thus, we have that

lim
c→0

CŜ1AD − CS1AA
c

= ∆ + lim
c→0

(
NAA − N̂AD

)
> ∆, when r < 1/2,
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where

∆ =
1

c

N∑
m=1

C(N,m) (1− r)N−m rm{
∫ a

p̂N−1

(a− x) dGm(x)

+
m∑
s=1

C(m, s) [1− FA(p̂N−1)]
m−s

∫ p̂N−1

p
A

(a− x) dHs(x)}

−1

c

N∑
m=1

C(N,m) (1− r)N−m rm
∫ a

p
A

(a− x) dGm(x).

It is then suffi cient to prove that ∆ = 0. To see it, note that

∆ = lim
c→0

1

c

N∑
m=1

C(N,m) (1− r)N−m rm{−
∫ p̂N−1

p
A

(a− x) dGm(x)

+
m∑
s=1

C(m, s) (1− FA(p̂N−1))
m−s

∫ p̂N−1

p
A

(a− x) dHs(x)}

= lim
c→0

1

c

N∑
m=1

C(N,m) (1− r)N−m rm{−
∫ p̂N−1

p
A

Gm(x)dx

+

m∑
s=1

C(m, s) (1− FA(p̂N−1))
m−s

∫ p̂N−1

p
A

Hs(x)dx}

= lim
c→0

1

c

∫ p̂N−1

p
A

{
[1− rFA(p̂N−1) + rFA(x)]N − 1

− [1− rFA(p̂N−1)]
N + (1− rFA (x))N

}
dx

= lim
c→0

∂
∫ p̂N−1
p
A

{
[1− rFA(p̂N−1) + rFA(x)]N − 1

− [1− rFA(p̂N−1)]
N + (1− rFA (x))N

}
dx

∂c

= lim
c→0

∫ p̂N−1

p
A

NrF ′(p̂N−1)
∂p̂N−1
∂c

{
− [1− rFA(p̂N−1) + rFA(x)]N−1

+ [1− rFA(p̂N−1)]
N−1

}
dx

= − lim
c→0

NrF ′(p̂N−1)
∂p̂N−1
∂c

∫ p̂N−1

p
A

{
[1− rFA(p̂N−1) + rFA(x)]N−1

− [1− rFA(p̂N−1)]
N−1

}
dx

= 0,

where in the last step we have used two facts

lim
c→0

FA(p̂N−1)
∂p̂N−1
∂c

=
1− r
r

, 22

22See Equation (45).
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and23

lim
c→0

1

FA(p̂N−1)

∫ p̂N−1

p
A

{
[1− rFA(p̂N−1) + rFA(x)]N−1

− [1− rFA(p̂N−1)]
N−1

}
dx = 0.

Now we derive a high-type firm’s demand function under descending price sorting, when M

products can be observed in each sample. Let the pre-given reservation prices be p̂MD,1 ≤ p̂MD,2 ≤
... ≤ p̂M

D, N
M
−1 and the conditional optimal price distribution for high-type firms be FD(p; p̂D,M).

Similar to the case in which M = 1, define

p̂MD,0 ≡ pMD and p̂M
D, N

M

≡ pMD = a.

We derive the high-type firm’s demand function for each price interval, p ∈ (p̂MD,n, p̂
M
D,n+1], where

n = 0, 1, ..., NM −1. let DM
0 (p) and DM

1 (p) be the demand from shoppers and searchers, respectively.

Thus, the total demand is given by

DM (p) = µDM
0 (p) + (1− µ)DM

1 (p), (46)

whereD0(p) = [1− rFD(p; p̂D,M)]N−1 since shoppers buy at price p if and only if all other products

are either low-quality or have a price higher than p.

The demand from searchers is given by

DM
1 (p) = Pr{searchers buy at price p}

=
N−1∑
k=0

Pr{searchers buy at price p, with k prices higher than p}

=

N−1∑
k=0

DM
1 (p, k), (47)

where DM
1 (p, k) = Pr{searchers buy at price p, and there are k prices higher than p}, for k =

0, 1, ..., N − 1.

23Note that as c→ 0, we have p̂N−1 → p
A
and FA(p̂N−1)→ 0, so that

0 ≤ 1

FA(p̂N−1)

∫ p̂N−1

p
A

{
[1− rFA(p̂N−1) + rFA(x)]

N−1

− [1− rFA(p̂N−1)]N−1
}
dx

<
1

FA(p̂N−1)

∫ p̂N−1

p
A

{
1− [1− rFA(p̂N−1)]N−1

}
dx

=
1− [1− rFA(p̂N−1)]N−1

FA(p̂N−1)

(
p̂N−1 − p

A

)
→ 0.
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Denote F̂MD,k = FD(p̂MD,k; p̂D,M) for any k = 0, 1, ..., NM − 1, with F̂MD,0 = 0. The searcher’s

demand is given as follows.

For any p ∈ (p̂MD,n, p̂
M
D,n+1],

(i) if k ≤M(n+ 1)− 2, we have

DM
1 (p, k) = C(N − 1, k) (1− r)N−1−k [r − rFD(p; p̂D,M)]k ,

(ii) if k = M(n+ 1)− 1, we have

DM
1 (p, k) = C(N − 1, k) [1− r + rFD(p; p̂D,M)]N−1−k [r − rFD(p; p̂D,M)]k ,

(iii) if k = M(n+ s) + i, where s = 1, ..., NM − n− 1 and i = 0, ...,M − 2, we have

DM
1 (p, k) = C(N − 1, i)C(N − 1− i,M(n+ s)) (1− r)N−1−i−M(n+s)(

r − rF̂MD,n+s
)M(n+s)

[r − rFD(p; p̂D,M)]i ,

(iv) if k = M(n+ s) +M − 1, where s = 1, ..., NM − n− 1, then

DM
1 (p, k) = C(N − 1,M − 1)C(N −M,M(n+ s)) [1− r + rFD(p; p̂D,M)]N−1−k(

r − rF̂MD,n+s
)M(n+s)

[r − rFD(p; p̂D,M)]M−1 .

To understand (i), note that if there are k ≤ M(n + 1) − 2 prices higher than p, price p will

appear in one of the first n pages/samples. Since p > p̂MD,n, searchers buy at price p only if all

the products with prices lower than p are low-quality. Thus, in this case, DM
1 (p, k) equals the

probability that k out of N −1 prices are higher than p, and the rest N −1−k prices are zero (i.e.,
they are low-quality products).

For expression (ii), when k = M(n+ 1)− 1, price p appears as the last one (or the lowest one)

in page n + 1. Since p̂MD,n < p ≤ p̂MD,n+1, searchers never stop searching in the first n pages, and

buy at price p immediately without further searches. Thus, DM
1 (p, k) equals the probability that

k out of N − 1 prices are higher than p, and the rest N − 1− k prices are lower than p.

For expression (iii), if k = M(n+ s) + i, where s = 1, ..., NM − n− 1 and i = 0, ...,M − 2, then

price p is in the middle of page n + s + 1 (not the last one). In this case, searchers purchase

at price p if and only if two conditions are satisfied: (1) the first M(n + s) prices should be no

lower than the reservation price p̂MD,n+s, so that searchers will not stop and purchase before they

observe p in page n + s + 1; (2) all the prices after p should be zero (i.e., low-quality products)
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because otherwise searchers will buy at a lower price in page n+ s+ 1. Thus, DM
1 (p, k) equals the

probability that M(n + s) out of N − 1 prices are higher than p̂MD,n+s, i prices are higher than p,

and the rest N − 1− k prices are zero.

Finally, for expression (iv), when k = M(n + s) + M − 1, where s = 1, ..., NM − n − 1, price p

appears as the last one in page n + s + 1. Searchers purchase at price p if and only if they did

not stop searching in the first n+ s pages. In other words, the first M(n+ s) prices should be no

lower than the reservation price p̂MD,n+s. Compared to case (iii), that searchers purchase at price

p does not require that all the prices after p be zero. This is because p is the last and the lowest

price in page n+ s+ 1. Thus, in this case, DM
1 (p, k) equals the probability that M(n+ s) out of

N − 1 prices are higher than p̂MD,n+s, M − 1 prices are higher than p, and the rest N − 1− k prices
are lower than p.

With the expression of DM
1 (p, k) for any k = 0, ..., N − 1, the total demand function is then

derived according to (47) and (46). And the conditional optimal price distribution FD(p; p̂D,M)

can be solved according to the constant-profit condition πD = pDM (p), for any p within the price

support.

Proof of Proposition 12. Let NM
S be the expected number of searches that take place under

price sorting S ∈ {R,A,D}, when M products are observed in each sample. Then it suffi ces to

show that, as the search cost c→ 0,

NM
A < NM

D < NM
R , if r > 1/2;

and NM
D < NM

A < NM
R , if r < 1/2.

Following the similar arguments as those in Proposition 6, we can see that, as the search

cost approaches zero, under random price sorting, searchers always sample all the products in the

market; under ascending price sorting, searchers stop sampling after they have gone through all

the low-quality products; under descending price sorting, searchers stop sampling only when they

have gone through all the high-quality products. Thus, NM
A and NM

D are always smaller than

NM
R . Moreover, N

M
A > NM

D if and only if there are more low-quality products in the market, i.e.

r < 1/2.

Proof of Proposition 13. The logic is the same as that of Proposition 11. Random price

sorting is never chosen in equilibrium because it is always dominated by ascending price sorting:

compared to random price sorting, by choosing ascending price sorting, searchers can purchase

high-quality products at lower prices and search less frequently. To compare ascending price

sorting and descending price sorting, we can show that, given any price distribution, the difference

between searchers’purchase surplus is an infinitesimal of higher order than the search cost c, as

c→ 0. On the other hand, the total expected number of searches is smaller under ascending price

sorting than under descending price sorting if and only if r > 1/2. This means there is always a
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unique equilibrium in the case of endogenous price sorting, in which consumers choose ascending

price sorting if r > 1/2, and choose descending price sorting if r < 1/2.
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