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Abstract

This paper is concerned with the theory of resilience pricing and

sustainability measurement in the presence of risk for regime shift in

a dynamic economy-environment system. Following Holling (1973),

we consider resilience as the maximal perturbation that the system

can absorb without flipping into a qualitatively different state. Using

a multisector growth model under uncertainty, we derive the shadow
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price of resilience that affects the probabilities of the system to flip

in the future. We also analyze the role of resilience on sustainability

with both ex-ante and ex-post welfare measures.

Keywords: Regime shift, resilience, ecosystem, valuation, and in-

clusive wealth

1 Introduction

It is well-known nowadays that wealth is the appropriate indicator of whether

or not an economy is on a sustainable development path. To the best of our

knowledge, it was Samuelson (1961) who first understood this in the context

of an optimal economy. In several recent papers, Dasgupta and Mäler (2000),

Arrow et al. (2003) and Mäler et al. (2008) developed the theory even for

non-optimal economies and showed that changes in wealth over time are a

nearly perfect welfare indicator. However, it was Pearce et al. (1989) and

Pearce and Atkinson (1993) who first applied the concept empirically. It is

worth mentioning that wealth as welfare indicator needs to be understood

and measured as a comprehensive concept including nonmarket goods and

services such as human capital and ecosystem services.

This paper shows how ecosystem resilience can be included in the compre-

hensive wealth measurements framework. In all ecosystems, there are feed-

backs between different components. Some of these feedbacks are positive,

which implies that an initial perturbation of the system will be amplified.

Sometimes, the positive feedback becomes active when the system reaches

a particular state, and the result is that the system will flip into a different

state which may be very different from the initial state (cf. Norton, 1995;

Ekins et al., 2003; Gunderson, 2001; Scheffer et al., 2001). The state has

then a threshold or a bifurcation. If the initial state is judged to be better

than the state the system would reach if it would switch, it is of importance

to prevent it from reaching the threshold. The largest perturbation the sys-
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tem can absorb without flipping into a different state is known as resilience

(Holling 1973).

If there is no uncertainty about the dynamics of the system, we can always

manage the system to stay within the bounds of resilience. However, we never

have full information and it is better to regard the system as a stochastic

process (Perrings, 2006). This implies that there may be a positive proba-

bility that the system will reach the threshold and flip into the non-desired

state. This probability will be lower if the resilience increases. Therefore

it is essential to manage the resilience. Furthermore, resilience should be

regarded as a capital stock as it provides us with a kind of insurance against

reaching a non-desired state.

As a stock, resilience has an accounting price and that price corresponds

to the change in the expected net present value of future ecosystem services

resulting from a marginal increase in resilience stock today (Mäler et al.,

2007). Thus, we can estimate the accounting price if we know the dynamics

of the system and the statistics of the system (as a stochastic process). This

idea has been applied in a case study of the Goulburn-Broken Catchment

in South East Australia (Walker et al., 2010) where the resilience stock in

this system is the distance of the current water table to its threshold level at

which the normal agricultural land would flip into a salinized state.

In this paper, we attempt to further develop the resilience pricing model

in Mäler et al. (2007) and Walker et al. (2010) in several new directions.

In sections 2 and 3, we generalize the original model for pricing an initial

resilience stock to pricing resilience at any future date through the use of

integrated hazard functions. We also explore the properties of resilience

prices such as their algebraic signs and the relationship with the existing

resilience stock. In section 4, we examine the implication of resilience prices

for ex-ante and ex-post welfare measurement. As compared to the ex-post

case, it is shown that the ex-ante measure of comprehensive wealth growth

involves two extra terms in addition to the usual genuine saving expression.
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One is the expected loss due to the future flip risk and the other is the risk

aversion loss due to the uncertain resilience stock change in a future period.

Section 5 sums up the paper.

2 A prototype model

Consider an economy-environment system with conventional capital stocks

K(t) such as physical capital, natural and environmental assets at time t,

with initial values K(0) = K0 > 0. In addition, there is a resilience-related

stock Z(t) with initial stock Z(0) = Z0. We assume two possible regimes, a

normal regime with the resilience-related stock Z(t) greater than its thresh-

old value Z̃(t) i.e. Z(t) > Z̃(t), and a disturbed regime after a flip in the

ecological system with Z(t) < Z̃(t). Following Holling, we define X (t) =

Z(t) − Z̃(t) as a resilience stock which corresponds to the maximum dis-

turbance the system can absorb without flipping from the normal into a

disturbed state. To start with, we assume that Z (t) is a resilience-related

stock following some "pure" stochastic process without any active manage-

ment and Z̃ (t) is a deterministic threshold value. The stock X (t) in this

setting is thus a "pure" resilience stock with no direct contribution to the

economy1 but an indirect effect through its effect on the risk of regime shift.

Later on, we will extend the model with resilience management. Initially, we

have the normal regime such that Z(0) > Z̃(t) or X0 > 0. As time goes,

however, there is a probability at each point in time t such that the system

flips from the normal into a disturbed regime. The flip probabilities over time

will of course depend on the properties of the underlying stochastic process

X(t) = f(X0, t, ε) where ε is some stochastic component.

For the moment, let us simply assume that the probability density for a

flip at time s > 0, from the normal regime into a disturbed one, be θ(X0, s).

1If the same stock has other functions than the resilience service, then it can be treated

as a composite stock with partial contribution to resilience services.
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The cumulative flip probability over a time interval [0, t], then, becomes

F (X0, t) =
∫ t
0
θ(X0, s)ds, with properties F (X0, 0) = 0 and limt→∞ F (X0, t) =

1. The corresponding probability for the normal regime to survive over the

time interval [0, t], conditional on a normal regime at the initial date t = 0

can be expressed as S(X0, t) = 1−F (X0, t). With a given stream of flip risks,

we will first derive an expression for the expected intertemporal welfare, and

then study the implicit price of the resilience stock. Conditional on the nor-

mal regime, a governing rule α1 as defined in Arrow et al. (2003) would

map the initial condition K0 into a stream of vector-valued consumption

services C1(t) and capital stocks K1(t) such that C1(t) = F(K0, α1, t) and

K1(t) = G(K0, α1, t), t ∈ [0,∞), where F and G are two different vector-

valued functions. If the system flips at time s ∈ [0,∞) with a structural

change, then consumption and capital henceforth would follow an alterna-

tive path governed by an adapted rule α2 such thatC2(t) = F(K(s), α2, t−s)
andK2(t) = G(K(s), α2, t−s) for t ∈ [s,∞). Note that the governance rules

may also be optimal rules in a first best setting with perfect governance.

Preferences are represented by a time-invariant utility function V (C(t)),

which satisfies certain regularity conditions. For notational ease, we de-

note the instantaneous utility at time t conditional on the normal regime

by U1(t) = V (C1(t)), and that conditional on the disturbed regime by

U2(t) = V (C2(t)) for all t ∈ [0,∞).

Imagine that the system flips at a known date s, then the intertemporal

welfare would be

W0(s) =

s∫
0

U1(t) exp(−rt))dt+

∞∫
s

U2(t) exp(−rt)dt (1)

where r denotes the rate of pure time preference2. For a stochastic flipping
2Barbier and Strand (1998) published a model very similar to the one presented in

this paperr. The difference is in the purpose of modelling. Here we are interested in the

inclusion of resilience values in the accounts of wealth, while Barbier and Strand were

interested in cost benefit analysis of changes in the mangrove forest.
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date, the expected intertemporal welfare can be expressed by

E(W0) =

∞∫
0

θ(X0, s)W0(s)ds =

∞∫
0

W0(s)dF (X0, s) (2)

Integrating (2) by parts and making use of (1), we obtain the expected in-

tertemporal welfare

E(W0) = W0(s)F (X0,s) |∞0 −
∞∫
0

F (X0, s) [U1(s)− U2(s)] exp(−rs)ds (3)

=

∞∫
0

U1(s) exp(−rs)ds−
∞∫
0

F (X0, s) [U1(s)− U2(s)] exp(−rs)ds

where the second equality follows from the properties of cumulative distri-

bution function F (X0, s) and the finiteness of the utility function3. While

the first integral on the second line of (3) represents the "normal" wealth,

the second integral measures the expected loss in welfare due to the risk of

a future flip. An alternative expression of (3) is

E(W0) =

∞∫
0

[S(X0, s)U1(s) + F (X0, s)U2(s)] exp(−rs)ds (4)

where S(X0, s) = 1−F (X0, s) denotes the survival probability of the normal

regime from time 0 to s. The expression (4) corresponds to the present

discounted value of future expected utilities i.e. the weighted average of two

extreme utility streams, one is the ideal normal stream and the other is the

fully disturbed utility one. Note that we have converted the expression (1)

involving two subsequent time periods to a linear combination of two parallel

streams in (4) due to the stochastic flip date.

3This model is similar to the catastrophe model developed by Cropper (1976) though

the intended application is different.
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Now, what is the shadow price of the resilience stock X0 at the initial

date? By applying the Leibniz rule, we obtain the following expression

q(0) =
∂E(W0)

∂X0

= −
∞∫
0

∂F (X0, s)

∂X0

[U1(s)− U2(s)] exp(−rs)ds (5)

This is the marginal contribution of an extra unit of the resilience stock to the

intertemporal welfare i.e. the expected present value of future utilities. If the

resilience stock is defined in a positive way such that X0 is a public "good"

rather than "bad", then we expect its price q(0) to be positive. Suppose that

the normal regime we have now is a desirable regime and the flipped regime

is an undesirable one. Then, we have
∫∞
0

[U1(s)− U2(s)] exp(−rs)ds > 0 i.e.

the present value of future utilities is larger under the normal regime than

the disturbed one, though it is possible for U1(s)−U2(s) < 0 at some points

in time s. In addition, we should also have ∂F (X0, s)/∂X0 < 0 i.e. a higher

initial resilience stock contributes to lower future flip probabilities. Then we

state the following proposition:

Proposition 1 Suppose that the initial resilience stock X0 is defined in a

positive way such that
∫∞
0

[U1(s)− U2(s)] exp(−rs)ds > 0 and ∂F (X0, s)/∂X0 <

0 for all s ∈ [0,∞), then the resilience price in (5) is positive with q(0) > 0.

Proof. The proof is straightforward. Let m = infs

(
−∂F (X0,s)

∂X0

)
> 0, then

q(0) = −
∞∫
0

∂F (X0,s)
∂X0

∆U(s) exp(−rs)ds > m

∞∫
0

∆U(s) exp(−rs)ds > 0, where

∆U(s) = U1(s)− U2(s).
It is worth mentioning that whether a regime is desirable or not is an eco-

nomic question depending on human preferences rather than pure ecological

issues (cf. Nelson et al., 2007). There might exist rather resilient systems in a

"normal" or current regime (cf. Max et al., 2004) such as an algae-dominated

lake ecosystem which can greatly resist to changes but the regime is less de-

sirable than a fish-dominated one where
∫∞
0

∆U(s) exp(−rs)ds < 0. In such
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a case, the resilience price would be negative as the alternative regime would

be better. Note also that even if resilience is a "good", its marginal value

may not follow the typical downward-sloping trend with respect to the exist-

ing resilience stock level. The intuition is that for a highly resilient system,

the effect of an extra unit of the resilience stock on the flip probability may

be small but the expected present discounted value of future utilities may be

large. On the other hand, if a system is less resilient, then the present value

of future utilities would be low but an extra resilience stock in this case may

have a larger effect on the reduction of the flip probabilities.

3 Flip modeling and resilience pricing

This section describes how the cumulative flip probability F (X0, s) and thereby

the survival probability S(X0, s) are associated with the stochastic process

X(t) for t ≥ 0. Initially, we have X0 > 0 i.e. Z(0) > Z̃(0) in the normal

regime. As time goes, the stochastic variable Z(t) fluctuates and the prob-

ability for the system to flip over a short time period [t, t + dt], conditional

on survival up to time t, is

Pr(X(t) ≤ 0) = Pr(Z(t) ≤ Z̃(t)) = Gt(Z̃(t)) (6)

where Gt(·) denotes the "in-space" cumulative probability function at time
t, valid for the infinitesimal time interval [t, t+ dt]. The lower the resilience

stock X(t) = Z(t) − Z̃(t) is, the larger probability the system would flip.

Along the "time" dimension, this can also be seen as the hazard rate at time

t i.e.,

λ(t) ≡ Gt(Z̃(t)) (7)

The survival probability over [t, t+ dt], conditional on a survival up to time

t, can thus be expressed as

1− λ(t)dt ≈ exp (−λ(t)dt) (8)
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for dt→ 0. This can be readily verified by a first-order Taylor expansion of

the exponential function exp(−λ(t)dt) at dt = 0. While the discrete version of

the total survival probability from time 0 to η is given by Πm
n=1 (1− λ(tn)dt)

with t1 = 0, tn+1 = tn + dt, tm = η, n = 1, 2, ...,m, the corresponding

continuous time version of the survival probability function from time 0 to t,

conditional on the initial resilience stock X0, becomes

S(X0, t) = exp

(
−
∫ t

0

exp (λ(s)ds)

)
= exp (−Λ(t)) (9)

where Λ(t) =
∫ t
0

exp (λ(s)ds) denotes the integrated hazard function. The

cumulative probability distribution function for a flip up to time t is thus

F (X0, t) = 1− S(X0, t).

It is seen that while the cumulative distribution function Gt(·) in (6) is
defined over "space" for the resilience stock at a given point in time t, the

cumulative distribution function, F (X0, t), is defined over "time" for [0, t].

We will now show how the two different cumulative distribution functions

are related to each other. Since 1− F (X0, t) = exp (−Λ(t)), we can take the

time derivative on both hand-sides to obtain

θ(X0, t) = λ(t) exp (−Λ(t)) (10)

and then integrate the density function over time to obtain

F (X0, t) =

∫ t

0

λ(s) exp (−Λ(s)) ds (11)

To get a better feel about the relationships, consider a constant hazard rate

λ(s) = λ̄ with integrated hazard Λ(s) = exp(λ̄s). Then, the flip probability

would follow an exponential form θ(X0, s) = λ̄ exp(−λ̄s), and the survival
probability is given by the well-known form S(X0, s) = exp(−λ̄s). In prac-
tice, however, the hazard rate may change over time depending on the type

of ecosystems and the underlying stochastic process of the resilience stock.

In this paper, we assume an autonomous stochastic process for a stylized
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ecosystem (cf. Dixit and Pindyck, 1994)

dX(s−t) = a(X)d (s− t)+b(X)dw(s−t), X (t) = Xt, s ≥ t and t ≥ 0 (12)

i.e. an generalized Ito process with dw(s − t) = ε
√
d (s− t), where ε is a

normally distributed variable with zero mean and unit variance. For dynamic

welfare analysis, we will need the resilience price information q(t) at any time

t > 0 in addition to that at t = 0 as derived in (5). Suppose that the system

has survived until time t without flipping, then the expected intertemporal

welfare at time t becomes

E(Wt) =

∞∫
t

[S(Xt, s− t)U1(s) + F (Xt, s− t)U2(s)] exp [−r (s− t)] ds (13)

where F (Xt, s − t) =
∫ s
t
θ(Xt, s)/ [1− F (X0, t)] denotes the cumulative flip

probability from time t to s conditional on survival up to time t. It is

readily seen that F (Xt, s − t) = 0 for s = t and lims→∞ F (Xt, s − t) =∫∞
t
θ(Xt, s)/ [1− F (X0, t)] = 1. Obviously, S(Xt, s− t) = 1− F (Xt, s− t) is

the probability for the system to survive from t to s conditional on no flips

up to timer t (from time 0).

Then, the shadow price per unit of the resilience stock Xt at time t is

defined by

q(t) =
∂E(Wt)

∂Xt

= −
∞∫
t

∂F (Xt, s− t)
∂Xt

[U1(s)− U2(s)] exp [−r (s− t)] ds (14)

i.e. the marginal contribution of an extra unit of the resilience stockXt to the

expected intertemporal welfare E(Wt), namely, the expected present value

of future utilities from time t onwards. As compared with the basic formula

in (5), the only difference lies in the conditional flip probability F (Xt, s− t)
upon survival at time t. For t = 0, this resilience price formula simply reduces

to the basic formula in (5) since the survival probability starting from time

0 and up to time 0 is simply 1.0!
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4 Comprehensive wealth and genuine saving

For dynamic welfare analysis, it proves convenient to define the expected

wealth at each given date t as a function of the capital stocks including

the resilience stock4 such that Ŵ (Kt, Xt) = E(Wt) as in (13). Given the

autonomous stochastic process in (12), it can be shown that the measure is

also autonomous with respect to the "initial" time t as stated in the following

lemma:

Lemma 1 Under the assumption of the stochastic process (12), the expected
intertemporal welfare Ŵ (Kt, Xt) is time-autonomous in that Ŵ (Kt, Xt) =

Ŵ (Kt′ , Xt′) for all Kt = Kt′ and Xt = X ′t with t
′ ≥ t.

Proof. For given Xt the stochastic process dX (s− t) in (12) is the same
as the process dX (s′ − t′) with Xt′ = Xt conditional on the same realization

of dw. Therefore, λ(s) = λ (s′) for s′ = s + (t′ − t). This implies that

F (Xt, s − t) = F (Xt′ , s
′ − t′) and S(Xt, s − t) = S(Xt′ , s

′ − t′). Moreover,
U1(s |Kt ) = U1(s

′ |Kt′ ) and U2(s |Kt ) = U2(s
′ |Kt′ ) by the invariant utility

functional form. Thus, we have

Ŵ (Kt, Xt)

≡
∞∫
t

[S(Xt, s− t)U1(s |Kt ) + F (Xt, s− t)U2(s |Kt )] exp [−r (s− t)] ds

∞∫
t′

[S(Xt′ , s
′ − t′)U1(s′ |Kt′ ) + F (Xt′ , s

′ − t′)U2(s′ |Kt′ )] exp [−r (s′ − t′)] ds′

≡ Ŵ (Kt′ , Xt′)

Following Arrow et al. (2003), we are interested in measuring the change

in welfare i.e. dŴ (Kt, Xt) over an infinitessimal time interval [t, t+dt]. If this

4Note that, for notational ease, the expressions K(t) and X(t) will be used inter-

changably with Kt and Xt, respectively.
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change is positive, then dynamic welfare increases over this time interval or

we say that the development is sustainable over this interval. With the deter-

ministic model in Arrow et al., this change is simply the genuine saving caused

by changes in the capital stocks which is the value of capital investment evalu-

ated at the local accounting prices i.e. dŴ (Kt, Xt) = P(t)dK (t)+q(t)dX (t)

where P(t) = ∂Ŵ (Kt, Xt)/∂Kt is the vector of shadow prices for the con-

ventional capital stocks and q (t) the resilience price at time t. For our model

with flip uncertainty, however, the problem is more complicated.

First, we need to differentiate between ex-ante and ex-post welfare mea-

sures. Suppose that we have come to a date t + dt and learned that no flip

has occurred yet, the ex-post change in the expected welfare becomes

dŴ |It+dt = Ŵ (Kt+dt, Xt+dt)− Ŵ (Kt, Xt) (15)

If dŴ |It+dt > 0, the future utility stream as seen from time t + dt onwards

has a larger expected present value than that from time t. The presumption

here is that the system has already safely passed the period of length dt from

time t with survival information up to time t, i.e. It+dt. However, if we

are "standing" at time t before the uncertainty over the following period is

resolved, where only the survival information It at time t is available, then

we have two different contingencies at time t+ dt. If no flip occurs over the

period, the intertemporal welfare at t + dt is given by Ŵ (Kt+dt, Xt+dt) =

E(Wt+dt) according to (13). The probability for this event, i.e. the survival

probability over (t, t + dt], is 1− λ(t)dt. If a flip would occur, then we have

the intertemporal welfare W̄t+dt =

∫ ∞
t+dt

U2(s) exp(−r (s− t− dt))ds, and the

probability for such an event is λ(t)dt.

Note that at time t with survival information It, we are facing at least two

important uncertainties: one is the flip uncertainty over the coming period

from t to t+ dt, and the other is the exact realization of the resilience stock

Xt+dt at time t + dt. As seen from time t with survival information up to
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time t, the expected intertemporal welfare at time t+dt can be expressed by

Ẽ (Wt+dt) = (1− λ(t)dt) Ŵ (Kt+dt, Xt+dt) + λ(t)dtW̄t+dt

= Ex

[
Ŵ (Kt+dt, Xt+dt)

]
− λ(t)dtΨt+dt (16)

where Ψt+dt = Ex

[
Ŵ (Kt+dt, Xt+dt)

]
− W̄t+dt denotes the would-be expected

loss caused by a certainty flip over (t, t+ dt] with respect to the uncertainty

in Xt+dt. From the derived results (15) and (16) above, we now state the

ex-ante welfare change according to the proposition

Proposition 2 Conditional on survival information up to time t, the ex-
pected change in dynamic welfare over an infinitesimal period of time (t, t+ dt)

is given by

E
(
dŴt |It

)
= Ex

[
Ŵ (Kt+dt, Xt+dt)− Ŵ (Kt, Xt)

]
− λ(t)Ψt+dtdt (17)

where the expression in brackets on the right-hand-side denotes the ex-post

intertemporal welfare change over the period conditional on survival, and the

last term λ(t)Ψt+dtdt is the expected loss due to the flip probability within the

period (t, t+ dt).

To fix ideas, let us consider an illustrative game of walking on a single-log

bridge: anyone who manages to walk through will receive a lottery prize of

$90, 100 and 110 with a chance of 1/3 each. If the player would lose balance,

drop into the stream below and end up wet on the other side, he would have to

pay a penalty fee of $900. The expected ex-ante wealth growth conditional on

"no drop" is Ex = $100 with three possible ex-post rewards $90, 100 and 110,

and the expected wealth loss becomes Ψt+dt = 100− (−900) = 1000. While

the expected wealth growth for a certain passage would be $100, the wealth

change for a certain drop would be E
(
dŴt |It

)
= 100−1000 = −900. For all

intermediate cases, the wealth change would depend on the drop probability.

λ(t)dt ∈ (0, 1) . If this probability is 0.05, then we have E
(
dŴt |It

)
=
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100 − 0.05 · 1000 = $50. Based on the green net national product (NNP)

modelling (cf. Weitzman, 1976; Weitzman, 2001; Aronsson et al., 2004),

Tsur and Zemel (2006) has also derived a term similar to λ(t)Ψt+dtdt and

used the term to adjust green NNP to conform with the maximum stationary

equivalent of future utility.

Proposition 2 indicates that it is important to distinguish ex-ante and

ex-post welfare changes, and in the ex ante case we need to take into account

two related but different types of uncertainties - the flip uncertainty over

the coming period and the uncertainty of realizations of the resilience stock.

Next, we are to Taylor approximate the would-be expected wealth growth

Ex

[
Ŵ (Kt+dt, Xt+dt)− Ŵ (Kt, Xt)

]
conditional on survival. By using lemma

1 together with equation (16) and following Dixit and Pindyck (1994), we

derive the following proposition for the expected rate of wealth change:

Proposition 3 Conditional on survival information up to time t, the ex-
pected rate of change in dynamic welfare is expressed by

E
(
dŴt |It

)
dt

= P(t)K̇ (t)+q(t)a (X (t))+
1

2

∂2Ŵt |It
∂X2 (t)

b2 (X)−λ(t)Ψt+dt (18)

where P(t) = ∂
(
Ŵt |It

)
/∂Kt is the accounting price of capital Kt, and

a (X (t)) = E(dX (t) /dt is the expected growth rate in the resilience stock

according to (12).

Proof. By equation (12) and lemma 1, the result follows directly from

taking a mathematical expectation of a second-order Taylor expansion of the

value function. The reason for the third term to appear is that dX2 in the

generalized Ito process in (12) is of order dt rather than dt2 (cf. Dixit and

Pindyck, 1994).

While the sum of the first two terms on the right-hand-side of (18) is the

expected value of the usual genuine saving, the third term is a loss term due

to risk aversion. Suppose that wealth is a concave function of Xt such as
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Ŵt (Xt) =
√
Xt. For given resilience stock at time t with Xt = 100, we have

Ŵt (100) = 10. If the growth in the resilience stock is 0 in the coming period,

then wealth growth would be
√

100 −
√

100 = 0. Now consider a stochastic

growth in the resilience stock with dX = −10 and dX = +10 with 50%

chance each, then the expected growth in wealth would be
√
90+
√
110

2
−
√

100 ≈
−0.01 26, which should corresponds to the third term representing loss due

to risk aversion. The main point in Proposition 3 is that an ex-ante measure

of welfare change should involve two additional loss terms in addition to the

expected genuine saving even if the price of the resilience stock is taken into

account. Thus, in dynamic welfare analysis with resilience stock and flip

uncertainty, we need to be explicit on whether it is an ex-post analysis of

welfare change over the "past year" or an expected welfare change over the

"coming year".

5 An extended model with resilience man-

agement

In the above analysis, we have assumed, for simplicity, that the resilience

stock is exogenous without any active management. In this section, we show

that much of the insights derived from analyzing the basic model carries

over to the more general case with resilience management (Carpenter et al.,

1999). Suppose that with active resilience management m(t), we can affect

the mean and variance of the stochastic process in (12) with resulting values

a∗(X,m) and b∗(X,m), as well as the utility streams U∗1 (s) and U∗2 (s) for

the non-flipped and flipped case (though capital reallocations), respectively,

then resulting cumulative probability function at time s can be written as

F ∗(Xt,s−t), and the corresponding expected wealth function E(W ∗
t ) accord-

ing to (13). The resilience pricing formula as in (14) becomes
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q∗(t) =
∂E(W ∗

t )

∂Xt

= −
∞∫
t

∂F ∗(Xt, s− t)
∂Xt

[U∗1 (s)− U∗2 (s)] exp [−r (s− t)] ds

(19)

where the time paths for all variables are conditional on the resilience man-

agement actions m(t). Unless the flip probability F ∗(Xt, s − t) over time

s ≥ t can be made to zero by perfect resilience management, the structure

of the resilience pricing and sustainability measurement model remains the

same though the exact numbers would change.

To eliminate the possibility of any flip risk, it is required that the resilience-

related stock variable Z (s) to be distributed over some domain [A,B] such

that A > Z0, i.e. the lower bound of the stock variable should always be

greater than the threshold value. For the generalized Ito stochastic process,

this is impossible unless there can be unlimited capacity of resilience man-

agement for instant adjustment of the stock size. For certain stochastic

processes with uniform distributional assumptions, if the management ca-

pacity can make the lower bound of the resilience-related stock always above

the threshold level, it is of course possible to the eliminate the flip risk com-

pletely. In this latter case, the resilience price would be identically zero, and

the model collapses to the standard model with no risk of regime shift. How-

ever, whether a management program m(t) as such can be justified depends

on its benefit and cost via capital reallocations.

6 Concluding remarks

This paper is concerned with the theory of ecosystem resilience pricing in the

presence of regime shift risks as well as its role for sustainability measurement.

In additional to the conventional capital stocks such as natural, physical and

human capital, we also consider the variable that affects the resilience of

ecosystem functions and stability as a capital stock. Thus, the resilience stock
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may have a value in its own right even if it may not be directly involved in the

production process. In comparison to the other capital forms, this resilience

asset enters the model in a different way. Under the normal conditions, it

does not matter for the ecosystem services and human well-being. However,

when the resilience stock variable crosses a threshold, then the ecosystem

will flip into a qualitatively different state (which is termed a regime shift).

After the flip, the production potential and other intangible services of the

system will be rather different and the governing rules for managing the

system should also be adapted. If we look at the ex-post outcome, the

comprehensive wealth (Arrow et al., 2003) will undergo an abrupt, a non-

continuos fall, at the time when the flip takes place. However, since the flip

date in the future is not known with certainty, we also consider of the (ex

ante) expected comprehensive wealth as a welfare measure, which is smooth

over time. This ex-ante measure involves two additional terms in addition

to the standard genuine saving measure: one is the risk aversion loss due to

the uncertain realization of the resilience stock and the other is the expected

welfare loss due to a possible flip over the period.

The pattern of future flip risks depends on how the resilience stock evolves

over time. When the resilience stock is high, e.g. when the biomass of a key-

stone species is far above its minimum viable population level, we would

expect a high probability for the system to remain stable for a given future

time horizon. On the contrary, if the system resilience is close to zero, then

a small external shock may drive the species into extinction. Thus, the re-

silience stock has a value per se for its role in retaining ecosystem functioning

and stability.

In the basic model, we consider the dynamics of the resilience stock as a

pure stochastic process. The shadow price of resilience at any point in time

is defined as the present discounted value of future improvements in welfare

accrued from the reduced regime flip risk due a unit increase in the concurrent

resilience stock. In our extended model, we also allow resilience management
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which may improve the resilience stock dynamics, and we show that as long

as the flip risk cannot be completely eliminated, the qualitative results from

the basic model will carry over to the managed ecological-economic system.

In this paper, we have not attempted to examine the adaptation strategies

but focus on deriving the shadow price of resilience in order to be integrated

in social cost-benefit analyses and comprehensive wealth evaluations.
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