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Abstract

We use a spatial autoregressive model to study the determinants of firm-
level productivity growth using longitudinal data on China’s electric apparatus
industry over the period of 1999-2007. Factors considered include technological
spillover, R&D and export behavior, agglomeration economies, and public ex-
penditure. We propose modifications to Kelejian and Prucha’s (1998) FE-2SLS
procedure and Mutl and Pfaffermayr’s (2011) RE-FG2SLS procedure to cope
with the technical difficulties with our unbalanced panel. Statistical evidence
strongly favors the fixed effects model over the random effects model. According
to our estimates, there are large and significant technological spillovers among
firms. Individually, firms benefit from their own R&D and export activities.
Market competition and public expenditure in the local and neighboring juris-
dictions are found to be important determinants to productivity. Our model
also provides direct evidence that the technological spillover effects attenuate
rapidly in spatial distance. Finally, the inter-regional spillover effects are found
to be more pronounced and more significant on urban districts or jurisdictions
with smaller geographical areas. Geographic proximity to neighbors and special
administrative role jointly contribute to this observation.

1 Introduction

Productivity isn’t everything, but in the long run it is almost everything.

—Paul Krugman

The sources of total factor productivity (TFP) growth have been widely debated
in the literature from both macro and micro perspectives (see Syverson, 2011 for
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a survey and the references therein). Productivity differences at the micro level are
usually attributed to various factors such as access to foreign markets (Clerides, Lach,
and Tybout, 1998), firm-level innovation (Griffith, Redding, and Van Reenen, 2004),
ownership structure (Aitken and Harrison, 1999), and external market conditions such
as competition (Nickell, 1996) and specialization (Glaeser, Kallal, Scheinkman, and
Shleifer, 1992), among others. Early literature implicitly assumes the absence of in-
teractions among spatially dispersed firms. A major departure from this tradition was
Rosenthal and Strange (2003) who conduct a micro-level analysis of the geographic
content of agglomeration economies. Since then the producer practices that may have
spillover effects within and across the geographic boundary on the productivity levels
of others come into the limelight. These externalities are discussed in the context
of classic agglomeration mechanisms such as input sharing, knowledge or technology
spillover. Higher productivity correlations among “nearby” producers are usually
tested by regressing the productivity level for a specific firm on exogeneous variables
such as R&D expenditure of other firms or the presence of foreign investment (Wei
and Liu, 2006; Griffith, Redding, and Van Reenen, 2004; Keller and Yeaple, 2009).
However, two research questions, although important, are not answered by this strand
of literature: (1) to what extent firm-level productivity growth could be explained by
that of neighboring firms; and (2) whether the spillovers generated from agglomera-
tion through technology linkages or input sharing attenuate with geographic distance
and by how much.

By answering these two questions, this paper contributes to the micro-level pro-
ductivity analysis in several aspects. First, with county-level geographic information,
we are able to conduct a rigorous spatial analysis on firm-level data extracted from
the China Industry Survey dataset over the period of 1999-2007. Second, we imple-
ment a bootstrapped version of Kelejian and Prucha’s (1998) FE-2SLS procedure that
accounts for heteroskedasticity and spatial autocorrelation in the error term. We also
present empirical evidence that our method is superior to the RE-FG2SLS estima-
tor adopted by some recent studies (e.g. Baltagi, Egger, and Kesina, 2015). Third,
our empirical specification allows us to study separately the spillovers from different
types of neighbors: those in the same region (intra-region) and those in nearby re-
gions (inter-region). Similarly, we are able to gauge inter-regional spillovers of local
market conditions.

Our spatial analysis controls for sources of productivity growth identified by the
literature, especially Chinese studies. These include R& D activity, export behavior,
and local market conditions.

There is a long literature linking productivity with R&D activity (Hall, Mairesse,
and Mohnen, 2010). Among others, Doraszelski and Jaumandreu (2013) find evidence
of productivity growth as the consequence of R&D expenditures using a panel of
Spanish firms. Aw, Roberts, and Xu (2009) find bidirectional causality between R&D
and productivity growth among Taiwanese electronics exporters. Chinese studies such
as Hu and Jefferson (2004), Hu, Jefferson, and Jinchang (2005), and Boeing, Mueller,
and Sandner (2015) report similar findings using Chinese data. Our study shows that
a 10% increase in R&D activity, measured by the share of new products in the gross
output, contributes to an average of 1.9% increase in productivity in our sample.
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The marketization reform (Jefferson and Su, 2006) followed by China’s accession
to WTO in 2001 results in deep foreign market engagement by Chinese firms. The
literature on productivity suggests two mechanisms by export behavior: self-selection
and learning by exporting (Syverson, 2011). Even though the theoretical arguments
(Melitz, 2003; Grossman and Helpman, 1991) all suggest a positive effect, the empir-
ical evidence based on Chinese data is by far inconclusive. Bao, Huang, and Wang
(2015) test the self-selection effect and find it to be positive and significant. But the
studies by Lu, Lu, and Tao (2010) and Lu (2010) suggest that Chinese exporters are
on average less productive than non-exporters. In this study, we find strong evidence
that increase in exports do contribute to firm-level productivity growth.

The seminal work by Glaeser, Kallal, Scheinkman, and Shleifer (1992) studies
multiple agglomerative effects on industrial growth: localization, urbanization, and
competition. These market conditions are later widely tested in the productivity
literature. Firm-level evidence from developed economics suggests that productivity
growth benefits from specialization, competition, but not variety (Henderson, 2003;
Martin, Mayer, and Mayneris, 2011). Those on Chinese data (e.g. Sheng and Song,
2013; Hu, Xu, and Yashiro, 2015) seem to agree on the role of specialization, but
differ in their conclusions regarding competition. This study shows that firm-level
productivity benefits strongly from market competition in the same industry, but
specialization impairs productivity, which findings are more or less in line with those
of Glaeser, Kallal, Scheinkman, and Shleifer (1992).

Public spending as a local market condition is usually overlooked by studies based
on firm-level data. But studies on the growth or productivity effects of public capital
using aggregate data are abundant. International studies (Aschauer, 1989; Holtz-
Eakin, 1994; Hulten and Schwab, 1991; Fernald, 1999) generally find mixed results,
but those on China (Vijverberg, Fu, and Vijverberg, 2011; Demurger, 2001) usually
suggest an active role of public infrastructure at the province level. We are per-
haps among the first to provide micro evidence that public spending contributes to
productivity.

By controlling for the five TFP shifters – R&D, export, specialization, competi-
tion and local public spending, and constructing two spatial lags, our baseline model
reveals strong technological spillovers among firms in China’s electronics apparatus
industry. The productivity of a firm increases by 3.5% – 4.0% if the intra-regional
neighbors experience a 10% productivity growth, much larger in size and more signifi-
cant than the spillovers from inter-regional neighbors. Given the small spatial scale of
the jurisdictions, our findings thus suggest that the productivity transmission process
attenuates rapidly in distance. These results are shown to be robust to definitions of
spatial neighbors and estimation strategies. Further analysis also shows that urban
districts and jurisdictions smaller in geographical area are much more susceptible to
inter-regional spillovers. Finally, we find evidence that local market conditions also
spillover into neighboring jurisdictions in roughly the same way as they affect local
firms, with a smaller magnitude. The findings regarding public spending echo those
of Yu, De Jong, Storm, and Mi (2013) and Gomez-Antonio and Fingleton (2012) at
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a much smaller geographic scale.1

The rest of the article is organized as follows: Section 2 presents our econometric
methodology and discusses the analytical difficulties brought by the unbalanced panel.
Section 3 describes our data source, variables, and their measurement. The empirical
results are interpreted in Section 4. Finally, we conclude the study in Section 5.

2 Empirical methodology

We plan to gauge the impact of a few socioeconomic factors on China’s industrial
productivity using firm-level data. The factors considered are either firm-specific or
pertinent to a geographic region where multiple firms are co-located. The statistical
analysis consists of two independent components: estimating firm-level productivity
and estimating the determinants of productivity. Since the panel data is unbalanced,
care much be undertaken because spatial regression models based on balanced panels
do not extend flawlessly to unbalanced ones. This section overviews the statistical
methodologies implemented in our empirical study.

2.1 Estimation of total factor productivity

In this study, we adopt Levinsohn and Petrin’s (2003) two-step method to estimate
TFP. The Levinsohn-Petrin (hereafter LP) method enables us to obtain unbiased
estimates of the production function, even if the variable inputs are endogenous to
market conditions or other time-varying unobservables that affect productivity.2We
assume the following Cobb-Douglas production function

yit = β0 + βllit + βkkit + ωit + ηit, (1)

where yit, lit, and kit are respectively the logarithm of value added, labor input, and
capital stock of firm i in year t. ωit is the total factor productivity, and ηit is the error
term. The LP method starts with estimating the 1st-stage least-squares regression

yit = βllit + φ (kit,mit) + ηit, (2)

1Their studies employ data aggregated at the provincial level.
2Our choice of the LP method over that of Olley and Pakes (1996) is largely based on data

concerns. The OP estimator proxies productivity by firm’s investment decision and state of exit.
However, investment is known to have limitations and may not be applicable in general (Levinsohn
and Petrin, 2003). More seriously, our data does not provide information on investment, thus it must
be derived from capital stock. Data on capital stock prepared by the NBS are infamous for being
systematically biased. Although various methods have been developed to estimate the true capital
stock (Brandt, Van Biesebroeck, and Zhang, 2012), they all rely on some subjective parameter, thus
may introduce substantial noise to the final result. Information on firm’s exit is also problematic
since it does not truly reflect a change in operational state, thus not a valid proxy. With the LP
method, we are able to circumvent all these obstacles.
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where mit is the logarithm of intermediate input, and φ(·) is a polynomial of order
three. An estimate of φ (kit,mit) is then constructed as

φ̂it = yit − β̂llit. (3)

The 2nd-stage of the LP procedure estimates βk through the following nonlinear re-
gression

yit − β̂llit − βkkit = ψ
(
φ̂it−1 − βkkit−1

)
+ ηit, (4)

where ψ(·) is another polynomial of order three. In practice, (4) is estimated by
minimizing the sum of squared errors. Once β̂l and β̂k are ready, the predicted value
of ωit is given by

ω̂it = yit − β̂llit − β̂kkit, (5)

which is our measure of TFP.

2.2 The spatial fixed effects model

We assume the following SAR (spatial autoregressive) model with autoregressive dis-
turbances:3

yt = λWtyt + Xtβ + αιt + µt + ut,

ut = ρMtut + εt,
(6)

where t = 1, · · · , T denote the time periods. Let the number of observations in
year t be Nt, the dependent variable yt in (6) is an Nt × 1 vector of firm-level TFP
estimates in year t. Wt and Mt are two Nt × Nt maximum row-normalized spatial
weight matrices with zeros in the main diagonal. Because the number of observations
varies with time, both Wt and Mt are time-varying. Xt is an Nt ×K matrix of K
exogenous regressors. ιt is an Nt × 1 vector of all ones. µt is an Nt × 1 vector of
individual fixed effects. If the same firm exists in period t and t′, the column entries
of µt and µt′ that correspond to the same firm must be identical in value. Finally,
the error term ut is assumed to be generated by a spatial autoregressive process with
i.i.d. disturbances εt whose mean is zero and variance is σ2

ε .
4

Stacking the equations over time periods, we can transform (6) into its panel
representation

y = λWy + Xβ + αι + µ + u,

u = ρMu + ε.
(7)

Here N =
∑T

t=1Nt is the total number of observations. y = (y′1,y
′
2, · · · ,y′T )′, and

other vectors (including X) are defined similarly. W = diag (W1,W2, · · · ,WT ) is
an N × N block-diagonal matrix with Wt, t = 1, · · · , T on the diagonal. M is

3The model bears different names in the literature. LeSage and Pace (2009) use the name SARMA
(spatial autoregressive-moving average), and Elhorst (2014) calls it the general nested spatial model.

4εt from different cross sections are also assumed to be independent.
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constructed in the same way.
Clearly, (7) implies

E (uu′) = σ2
ε (IN − ρM)−1 (IN − ρM′)

−1
= σ2

ε

(
IN − ρ (M + M′) + ρ2M′M

)−1
, (8)

and

E ((Wy) u′) = E
(
W (IN − λW)−1 uu′

)
= W (IN − λW)−1E (uu′) 6= 0.

Therefore, we have both endogeneity and non-spherical disturbances. To obtain con-
sistent estimates of the structural parameters, we can find instruments for the RHS
endogenous variable Wy. It remains to circumvent the incidental parameter problem
by taking the within transformation of (7) , if the fixed effects themselves are not
the interest of the study. For convenience, let’s denote the matrices of within and
between transformations by Q0 and Q1, respectively.5 Since Q0µ = 0, the within
transformation eliminates the fixed effects from (7), so that we have

Q0y = λQ0Wy + Q0Xβ + Q0u. (10)

Despite the autoregressive structure in u, the error term in (10) has zero mean, and
the expectation of the RHS endogenous variable Q0Wy turns out to be

E (Q0Wy) = Q0W (IN − λW)−1 (Xβ + µ + αι)

= Q0

∑
k=0

λkWk+1 (Xβ + µ + αι) , (11)

which suggests that Q0Wy in (10) can be instrumented by6

G0 =
(
Q0X,Q0WX,Q0W

2X, · · ·
)
. (12)

In this way, the structural parameters δ = (λ,β′, α)
′

can be consistently estimated
by 2SLS, which estimator we denote by δ̂W .

The above is the procedure proposed by Kelejian and Prucha (1998). δ̂W is
consistent as far as u is orthogonal to the exogenous regressors X. It remains to find
a proper standard error for this estimator. Let’s denote (Q0Wy,Q0X) by Z0 and

5Q0 and Q1 do not have neat matrix representations given the way we order observations in (7).
If we permute (7) so that observations are ordered first by individual i then by time t, then

Q′1 = diag

(
1

T1
ιT1ι

′
T1
,

1

T2
ιT2ι

′
T2
, · · · , 1

Tn
ιTnι

′
Tn

)
,

Q′0 = IN −Q1,

(9)

in which Ti denotes the number of time periods in which individual i is observed. Therefore, the
matrix representation of Q0 and Q1 can be obtained with a proper permutation of (9).

6Although a similar construction based on µ can also be used as instruments, it is infeasible since
µ is unknown at this stage.
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the projection matrix onto G0 by PG0 , then

E
(
δ̂W − δ

∣∣∣X) =

(
Z′0PG0Z0

N

)−1
Z′0PG0u

N
. (13)

It is clear from (8) that there are heteroskedasticity and spatial autocorrelations in u.
The conventional HAC standard errors are incapable of modeling such correlations.
In this study we obtain the standard errors by cluster bootstrapping, where each
distinct firm is treated as a cluster. Note that δ̂W is simply a one-step GMM estimator
using equal weights for the moment conditions. The two-step or the iterated GMM
estimator is theoretically more efficient. Again, bootstrapped standard errors are
preferred in either case.

2.3 The spatial random effects model

A competing model for (7) is the random-effects specification

y = λWy + Xβ + αι + u,

u = ρMu + µ + ε,
(7′)

where the individual effects µ is assumed to be uncorrelated with X. The FG2SLS
procedure of Kelejian and Prucha (1998) or Mutl and Pfaffermayr (2011) can be easily
adapted to unbalanced panels under the random effects assumption. Despite the fact
that Q0 does not commute with M, and that µ in u does not vanish after the within
transformation, Q0u as a whole is uncorrelated with Q0X. Thus, the 2SLS estimator
δ̂W obtained from (10) remains consistent. Hereby the residuals

û = y − λ̂Wy −Xβ̂ − α̂ι (14)

are consistent estimates of the error terms in (7′).
Although δ̂W is consistent, they are not efficient since the error terms Q0u in (10)

are non-spherical. A GLS transformation of (10) or (7) followed by another least-
squares will restore efficiency. Thus, the next step is to estimate the parameter ρ in
the error term u. Since ε is assumed to be spherical and all diagonal elements of M
are zero, we have

E (ε′Q0ε) = tr (Q0)σ
2
ε = (N − n)σ2

ε ,

E (ε′Q0MQ0ε) = tr (Q0M)σ2
ε = 0,

E (ε′Q0M
′MQ0ε) = tr (Q0M

′M)σ2
ε = tr (diag (Q0) diag (M′M))σ2

ε ,

E (u′Q1u) = Nσ2
µ + nσ2

ε .

(15)

Here n denotes the number of distinct individuals (firms) in the unbalanced panel,
diag (Q0) denotes the diagonal matrix constructed from the main diagonal of Q0, and
diag (M′M) is defined similarly.
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Since Q0ε = Q0 (IN − ρM) u, (15) lead to the following moment conditions:

û′ (IN − ρM′) Q0 (IN − ρM) û = (N − n)σ2
ε ,

û′ (IN − ρM′) Q0MQ0 (IN − ρM) û = 0,

û′ (IN − ρM′) Q0M
′MQ0 (IN − ρM) û = tr (diag (Q0) diag (M′M))σ2

ε ,

û′ (IN − ρM′) Q1 (IN − ρM) û = Nσ2
µ + nσ2

ε .

(16)

The three unknowns ρ, σ2
ε , and σ2

µ can be estimated from (16) by GMM. Let’s denote

the estimates by
(
ρ̂, σ̂2

ε , σ̂
2
µ

)
, with which we can perform the FGLS transformation on

(7):

Ω̂
− 1

2 (IN − ρ̂M) y = λΩ̂
− 1

2 (IN − ρ̂M) Wy + Ω̂
− 1

2 (IN − ρ̂M) Xβ

+ αΩ̂
− 1

2 (IN − ρ̂M) ι + ν. (17)

Ω−
1
2 in (17) is the conventional Cochrane-Orcutt transformation for unbalanced pan-

els. For any variable ξ,

Ω̂
− 1

2 ξit = ξit −
σ̂ε(

Tiσ̂2
µ + σ̂2

ε

) 1
2

ξ̄i., (18)

where Ti is the number of observations pertinent to individual i (Baltagi, Egger, and
Kesina, 2015).

The last step of the procedure is a 2SLS regression on (17) with the RHS endoge-

nous regressor Ω̂
− 1

2 (IN − ρ̂M) Wy instrumented by

G1 =
(
Q0X,Q0WX,Q0W

2X · · · ,Q0MX,Q0MWX,Q0MW2X · · · ,
Q1X,Q1WX,Q1W

2X · · · ,Q1MX,Q1MWX,Q1MW2X · · · ,
Q0Wι,Q0W

2ι · · · ,Q0Mι,Q0MWι,Q0MW2ι · · · ,
ι,Q1Wι,Q1W

2ι · · · ,Q1Mι,Q1MWι,Q1MW2ι · · · ,
)
,

(19)

which is the optimal set of instruments in the random effects setup.
Under certain assumptions, Mutl and Pfaffermayr (2011) show that the FG2SLS

estimator of the random effects model has the expected asymptotic distribution. If

we denote
(
Ω−

1
2 (I− ρM) Wy,Ω−

1
2 (I− ρM) X

)
by Z̃, and the projection matrix

onto G1 by PG1 , then the FG2SLS random effects estimator δ̂R has the asymptotic
distribution

δ̂R
a−→ N

δ,
σ2
ε

N

(
Z̃′PG1Z̃

N

)−1(
Z̃′PG1Z̃

N

)(
Z̃′PG1Z̃

N

)−1 . (20)
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This suggests that the variance-covariance matrix of δ̂R can be estimated by

σ̂2
ε

(̂̃
Z
′
PG1

̂̃
Z

)−1 ̂̃
Z
′
PG1

̂̃
Z

(̂̃
Z
′
PG1

̂̃
Z

)−1
, (21)

where
̂̃
Z is given by

(
Ω̂
− 1

2 (I− ρ̂M) Wy, Ω̂
− 1

2 (I− ρ̂M) X

)
, while σ̂2

ε is obtained

from the second stage of the procedure.

2.4 Issues with unbalanced panels

Our specification of the fixed effects model (7) is inconsistent with that of the random
effects model (7′). In the FG2SLS literature (e.g. Kelejian, Prucha, and Yuzefovich,
2004; Mutl and Pfaffermayr, 2011), both models are given by (7′), i.e., the individ-
ual effects are assumed to be a component of the disturbances. This specification
allows a similar feasible GLS transformation on the fixed effects model. The 2SLS
estimator obtained from the transformed equation is more efficient than δ̂W . More
importantly, the unified treatment facilitates a subsequent Hausman test. Such ad-
vantages, however, rely heavily on the commutativity of the within and the spatial lag
transformations, which is automatically satisfied if the panel is balanced and if the
spatial weight matrices are time-invariant. Without commutativity, this advantage
becomes an analytical burden. To see this, let’s note that the within-transformation
of (7′) gives

Q0y = λQ0Wy + Q0Xβ + Q0 (I− ρM)−1 (µ + ε) . (10′)

Since Q0 (IN − ρM)−1 6= (IN − ρM)−1 Q0, the individual effects µ do not vanish.
Under the fixed effects assumption, the error component Q0 (I− ρM)−1 (µ + ε) is
again correlated with X, so the within estimator becomes inconsistent.

By moving the individual effects from the error component to the structural model,
(7) ensures the consistency of δ̂W . With (7), however, the three-stage procedure is
no longer feasible. This is because the estimation of ρ is based on the residuals from
the first-stage 2SLS, namely

û0 = Q̂0u = Q0

(
y − λ̂Wy −Xβ̂ − α̂ι

)
. (22)

If the spatial weights Mt are time-invariant, then the within transformation Q0 and
the spatial lag operation M are commutative, so that

(I− ρM) Q0u = Q0 (I− ρM) u = Q0ε. (23)

Therefore, (I− ρM) Q̂0u can be used to construct the moment conditions regarding

Q0ε. Without commutativity, however, (23) is invalid and (I− ρM) Q̂0u becomes an
estimate of (I− ρM) Q0 (I− ρM)−1 ε, which contains the unknown parameter ρ.

Even if we are given a consistent estimator of ρ, the time-varying spatial weights
remain an obstacle to GLS estimation. To see this point, let’s note that in the
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transformed equation

(I − ρM) y = λ (I − ρM) Wy + (I − ρM) Xβ + (I − ρM) (αι + µ) + ε,

(I − ρM)µ must be eliminated before estimating the structural parameters. In bal-
anced panel models, this is done by the within transformation because M commutes
with Q0. Without commutativity, the within transformation is bound to fail.

The above discussion reveals the critical constraint imposed by unbalanced panels
on the fixed effects model. In order to obtain consistent estimates of the structural
parameters from least squares, one must choose (7) over (7′). By doing so, one has
to forfeit the efficiency gains from the FG2SLS procedure. Nevertheless, the work
by Kelejian, Prucha, and Yuzefovich (2004) shows that such efficiency gains, if any,
could be small in magnitude with even a moderate sample size.

Unbalanced panels also introduce minor changes to the FG2SLS procedure for the
random effects model. Because Q0 does not commute with M, the moment conditions
in (15) differ from their balanced-panel counterparts. For a similar reason, (19) now
consists of more instruments.

Although we use different specifications for the fixed and random effects models,
the fixed effects estimator δ̂W coincides with the first-stage within estimator of the
random effects model. Given specification (7′), both δ̂W and δ̂R are consistent under
the random effects assumption that E (µ|X) = 0, but the latter is more efficient.
Therefore, we can design a Hausman test by comparing δ̂W and δ̂R. If the random
effects assumption is rejected, we shall estimate the fixed effects model (7) and base
our inference on this alternative specification.

3 Data description and measurement

We obtain firm-level data on accounting and financial variables from the China In-
dustry Survey conducted by the National Bureau of Statistics. The data set was
issued on an annual basis from 1996 through 2010, covering over 160,000 industrial
establishments annually.7 Data on accounting and financial variables, including total
value added, net value of fixed assets, total employment, total intermediate inputs,
etc., enable us to estimate firm-level productivity and construct proxies for firm char-
acteristics. The data set also provides locational information of each firm, with which
a serious spatial analysis is possible. Because of its wide coverage and comprehensive
information on Chinese firms, this unique data set has been widely used in empirical
studies on China’s manufacturing sector, especially those on productivity analysis
(Brandt, Van Biesebroeck, and Zhang, 2012; Hu, Xu, and Yashiro, 2015; Baltagi,
Egger, and Kesina, 2015).

The geo-data are compiled from multiple sources. Our major reference is the
official Codebook of Administrative Divisions prepared by the National Bureau of

7The establishments in the survey are either state-owned enterprises or above-scale (annual rev-
enue from principal business over 5 million CNY) private (potentially with foreign ownership) en-
terprises.
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Statistics. The codebook, published as the National Standard GB/T 2260, assigns
six-digit administrative codes to over 3,000 administrative divisions in four levels of
the hierarchy: province, prefecture, sub-prefecture, district/county. As of 2007, there
were 2866 administrative units in the district/county level. With the codebook, we
are able to identify the location (district/county) of each establishment. We acquire
the geographic data of the administrative units from a commercial source. These
include the coordinates of the administrative centers and a shape file of administrative
boundaries. The geo-data enables us to construct spatial neighborhood relations
among administrative units either by spatial distance or by contiguity.

Our study also employs data on the budgetary expenditure of local governments in
the district/county level. The data is extracted from the Fiscal Statistics of Cities and
Counties (various issues) compiled by the Ministry of Finance. It is then merged into
the main data set by matching administrative codes. Details of our data preparation
process can be found in appendix A.

After these steps, we are able to assemble a longitudinal data set of 615,624 indus-
trial firms from 470 four-digit industrial sectors, located in 2,862 districts/counties.
Table 1 gives an overview of the data. Judged by the number of firms, total output,
and total employment, the data set provides a near-complete coverage of China’s
above-scale industrial firms over 1999-2007. Remarkably, a large fraction of the sam-
ple is replaced by new entrants each year. Sample rotation to such an extent may not
truly reflect firms’ entry and exit behavior, but is likely to be unintended error in the
sampling process.8 Therefore, exit is no longer a valid proxy for certain unobservable
characteristics of a firm, as suggested by (Olley and Pakes, 1996). The sparse nature
of the panel data set simply rules out the method of multiple imputation.9

In this study, we focus on the sector of electric equipment (industry code 3900)
over the period of 1999-2007. The choice of this sector is based on the following
concerns: First, the sector is technologically intensive. Influence of socioeconomic
factors on productivity may be more pronounced thus easier to detect for this sector.
Second, this sector provides a large sample size (over 99,000), with over 27,596 firms
located in 1629 districts/counties. The wide spatial distribution of the sector allows
us to conduct spatial analysis without a heavy penalty of data loss. The spatial
distribution of firms and employment in the sector are shown by figures (1-2).10 A
pattern of agglomeration is evident in these graphs. Firms and employment cluster
on the eastern coast and inland industrial centers, while the vast areas in the west
are unoccupied. This observation suggests a strong spatial linkage in the locational
choice of firms, and likely spatial interactions between firms when they are close.

The estimation of (1) requires firm-level data on value added, inputs in capital,
labor, and intermediate goods. In this study, yit is measured by total value added of
the firm, lit by annual average number of employed personnels, kit by annual average
value of net fixed assets, and mit by value of intermediate inputs. Data on these

8There are many gaps in the panel, indicating ”exits” followed by ”entries.”
9According to Hughes (2013), multiple imputation may introduce huge bias even if a moderate

amount of data is missing. Besides, the unbalancedness may reflect entry/exist behavior of firms.
Replacing firms that no longer exist with imputed ones changes the market structure.

10The figures use three year averages (log-transformed values) over 2005-2007.
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variables are available from the China Industry Survey with a few exceptions. Total
value added is missing in 2001, 2002, and 2004, thus must be derived from other
variables by accounting identities. The 2001 and 2002 values are computed as

total value added = gross industrial output - value of intermediate inputs

+ max{0, value added tax payable},

while those of 2004 are recovered from

total value added = revenue from principal business + increase in inventory

- value of intermediate inputs + max{0, value added tax payable}.

We plot the weighted (by employment) average TFP of each district/county in
figure (3). Compared to figures (1-2), the spatial pattern of TFP is less clear, partly
because individual heterogeneity is smoothed out by taking the average.11 Neverthe-
less, in small clusters, such as the metro areas of Chengdu, Guangzhou, and Wuhan,
we do observe the spatial gradient of TFP declining from the center to the periphery.

The basic geographic unit in our data is an (urban) district or a county. The
location of a firm is identified by the district/county in which it operates, but we
have no further locational information within the district/county. We assume that
firms in the same district/county are all located at the administrative center. In this
regard, a firm has two types of neighbors: those in the same district/county and those
in neighboring district/counties. Thus, we introduce two spatial weight matrices to
the SAR model (6):

W1tyikt =
∑
j∈It(k)
j 6=i

ljktyjkt

/ ∑
j∈It(k)
j 6=i

ljkt, (24)

W2tyikt =
∑

j∈It(k′)
k′∈N(k)

ljk′tyjk′t

/ ∑
j∈It(k′)
k′∈N(k)

ljk′t. (25)

Here the subscripts i and j denote firms, k and k′ denote districts/counties, and t
denotes time. It(k) is the set of all firms located in district/county k in year t, and
N(k) is the set of all neighboring districts/counties of district/county k. y is any
variable to be weighted, and likt is the employment of firm i in district/county k and
year t. The construction is based on the premise that larger firms (measured by em-
ployment) exert stronger influence on their neighbors than smaller ones. Contiguous
(Rook style) districts/counties are treated as neighbors. We also use an alternative
definition based on distance. Two districts/counties are regarded as neighbors if their
administrative centers are within 50 kilometers in great circle distance.12

11A few studies (e.g. Hu, Xu, and Yashiro, 2015) show that firm type, including ownership struc-
ture and size, is correlated with productivity. If a firm type is inproportionally high or low in a
district/county, the average TFP will be biased compared to those of neighbors.

12The choice of the 50-kilometer cutoff value is based on the observation that the mean distance
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Both W1t and W2t are maximum row normalized, and they have zeros in the
main diagonal. It is easy to see W1tW2t = W2t. This property helps to alleviate the
computation burden in the regression stage. For simplicity, we use a single AR term
in the error component, i.e., we assume u = ρW1u + ε in (7) and u = ρW1u +µ+ ε
in (7′).

The SAR model (6) considers two types of exogenous variables: firm idiosyncrasies
that have no effect on other firms, and market conditions that impact not only local
firms, but also likely firms in neighboring districts/counties. The literature (Sheng
and Song, 2013; Hu, Xu, and Yashiro, 2015; Baltagi, Egger, and Kesina, 2015) has
identified multiple firm-level characteristics that are correlated with productivity,
including ownership structure, size of the firm, years of operation, R&D activity,
and participation in the international market. Our current study specifies individual
effects. Thus, only time-varying factors can be properly estimated by the model. We
use two variables to proxy R&D (rd) and export (ex) activities. They are respectively
measured by the share of new merchandise in gross output and the fraction of gross
sales that are exported. We consider three aspects of the local market environment:
specialization (spec), competition (comp), and public spending (pub). According to
Marshall’s (1890) hypothesis, a city benefits from specialization because of spillovers
between firms in the same industry. Our measure follows that of Glaeser, Kallal,
Scheinkman, and Shleifer (1992), i.e.,

speckt =

sectoral employment in area k and year t

total industrial employment in area k and year t
sectoral employment in China and year t

total industrial employment in China and year t

Porter (1990) argues that competition among local firms boosts productivity. Instead
of measuring the average firm size (Glaeser, Kallal, Scheinkman, and Shleifer, 1992;
Rosenthal and Strange, 2003), we use the Herfindahl-Hirschman index of sectoral
employment in the district/county. Using the notations from (24), we define

compkt =
∑
i∈It(k)

(
likt∑

i∈It(k) likt

)2

.

The HHI take value between zero and unity. A smaller value indicates stronger
competition. Because the HHI decreases in the number of firms even if the distribution
of employment among firms remains unchanged, it also proxies the number of firms,
which has also been proposed as a measure of agglomeration (Hu, Xu, and Yashiro,
2015). Although the relationship between public investment and productivity has
been studied for long (Aschauer, 1989; Fernald, 1999; Vijverberg, Fu, and Vijverberg,
2011), it remains a missing link in the empirical studies using micro data. In this
study, we use total budgetary expenditure by the local government (pub).13 The

between contiguous neighbors is 64 kilometers, while the median is 47 kilometers. In this way, the
estimate of λ2 will have a similar interpretation as in the contiguity case.

13The expenditure categories in different issues of the Fiscal Statistics of Cities and Counties are
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variable is log-transformed so that the coefficient measures the effect of a percentage
change in public spending.

In figures (4-8), these exogenous variables are plotted on the map of administrative
divisions. There is a clear spatial pattern in ex, comp, and pub. Evidently firms in the
metro centers along the eastern coastal are export-oriented. Competition, measured
by HHI, is more fierce in regional centers, including those located in central and
western China. The spatial variation in public spending is less pronounced, but the
urban cores in the Yangtze Delta and the Pearl River Delta receive far more public
spending than the rest of the nation.

Our model allows local market conditions (spec, comp, and pub) to influence firms
in neighboring districts/counties. Therefore, their spatial lags W2tspeckt, W2tcompkt,
and W2tpubkt are also included as regressors. Finally, we end up with the following
empirical model

tfpikt = λ1W1ttfpikt + λ2W2ttfpikt + β1rdkt + β2exkt

+ β3speckt + β4compkt + β5pubkt

+ β6W2tspeckt + β7W2tcompkt + β8W2tpubkt

+ α + error term, (26)

where the error term is either µ+(I − ρW1)
−1 ε in the fixed effects model or similarly

(I − ρW1)
−1 (µ + ε) in the random effects model.

In practice, we retain the observations that have both types of neighbors, then
those with complete observations. This results in an effective sample size of 84727 if
the neighbor relationship among district/counties is defined by contiguity and 81331
if the neighbor relationship is defined by the 50 km criterion.

4 Empirical results

4.1 The baseline model

Table 4 summarizes the estimates of (26) by different model specifications. The con-
ventional fixed effects estimates are reported in column (FE) as benchmark. Column
(FE-IV) reports the the instrument variable 2SLS estimator discussed in section (2.2).
Since we have included two spatial lags in (26), the list of instruments (12) has to be
expanded. In practice, the instruments considered are rd, ex, spec, comp, pub, and
their spatial lags by W1, W2, or their interactions up to the second power. Since
the error terms in the within transformed model are potentially autocorrelated in
space, the conventional HA and HAC type standard errors are questionable. The
standard errors reported here are obtained through 50 bootstrap sample of firms. In
column (FE-GMM), we implement the conventional two-step GMM using the same
set of instruments. The same bootstrapping procedure is used to obtain the stan-
dard errors. Finally, we report the FG2SLS estimates of the random effects model

not compatible.

14



in column (RE-FG2SLS). Note that we use M = W1 in the error component, so the
instruments suggested by (19) are built on (1) rd, ex, spec, comp, pub, the vector
of ones, and (2) their spatial transformations by W1, W2, or their interactions up
to the second power. These variables are within-transformed (except for the vector
of ones) and between-transformed into the instruments. Since the error terms in the
GLS transformed structural equation (17) are spherical, we report the conventional
standard errors in column (RE-FG2SLS).

The estimates in column (FE-IV) are notably different from those in column (FE),
indicating substantial endogeneity bias in the latter. We note that the clustered stan-
dard errors for the 2SLS within estimator are sizably smaller (not reported) than the
bootstrapped values. This observation justifies our earlier concerns. According to
these estimates, the productivity of a firm increases by four percent if the produc-
tivity of neighboring firms in the same district/county increases uniformly by ten
percent.14 Judged by the magnitude and significance, the spatial spillovers within
the same district/county are strong. The coefficient on W2 tfp is much smaller
in size and insignificant. The result echoes the findings made by other researchers
that spatial interactions attenuate rapidly in distance (Rosenthal and Strange, 2003,
among others). Recently Baltagi, Egger, and Kesina (2015) analyze the spillover ef-
fects among Chinese firms using a statistical framework similar to ours. Interestingly,
they uses the same data source as ours. There, they made an unusual observation that
the strength of spillover effects, measured by the size of the spatial AR coefficient,
does not change much as they extend the geographic scope from districts/counties to
prefecture units, then to provinces. By incorporating two different spatial lags, our
model is able to address this issue in an explicit way.15 It is worthwhile to note that
the within model sweeps off idiosyncratic effects, thus it estimates how fluctuations
in productivity propagate over space. It does not reflect the selection and sorting ef-
fects suggested by the recent literature (e.g. Behrens, Duranton, and Robert-Nicoud,
2014).

The coefficients on rd and ex are both highly significant. According to these esti-
mates, firms are more productive as they increase their development of new products
or export more. These results are in line with the empirical evidence in the litera-
ture, especially those on China. The result suggests that the level of specialization in
the local area or neighboring districts/counties has little effect on firm productivity.
In contrast, productivity benefits significantly from competition.16 Both results are
similar to those of Glaeser, Kallal, Scheinkman, and Shleifer (1992). Finally, we find
strong evidence that firms benefit from public expenditures. A ten percent increase in
local public expenditure increases productivity by 1.4 percent. The marginal effects
of comp and pub in neighboring districts/counties are much smaller in size, but still
highly significant. These show firms also benefit from favorable market conditions in
neighboring areas.

14Our spatial weight matrices are row-normalized unless the firm is an island without neighbors.
15Their spatial model uses a single spatial AR term which corresponds to W1 in ours, thus is less

flexible than ours.
16The HHI is inversely related to the number of firms, which is a commonly used measure for the

agglomeration. Thus, we also find evidence that agglomeration boosts productivity.
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The two-stage GMM estimates reported in column (FE-GMM) are very close
to the 2SLS estimates. Despite its theoretical advantage in efficiency, the GMM
procedure yields virtually identical standard errors. Therefore, we prefer the 2SLS
estimator because it is much easier to implement.17 It is noteworthy that the esti-
mated idiosyncrasies µ̂ in (7) is strongly correlated with the regressors Z = (Wy,X),

namely, cor
(
µ̂,Zδ̂W

)
= −0.33. Furthermore, the standard error of µ (1.137) is

large relative to that of Q0u (0.671). These observations invalidates the random
effects assumption. The random effect FG2SLS estimates are reported in the last col-
umn. They are in sharp contrast to the 2SLS estimates, while the standard errors are
notably smaller in size. The evidence thus rejects the random effects assumption.18

We rerun the regressions using the distance based definition of neighborhood. The
estimates are summarized in table 5. We observe a similar patter as in table 4: the
2SLS and GMM routines produce similar estimates for the within model, which dif-
fer from the conventional within estimates or the random effects FG2SLS estimates.
The difference is more pronounced in the spatial AR coefficients. Using the 2SLS

estimates, we find cor
(
µ̂,Zδ̂W

)
= −0.32, and a large standard error for µ (1.133)

compared to that of Q0u (0.667). Thus we favor the within model over the random
effects model. Again, the GMM estimator does not show a clear advantage in terms of
efficiency, so we base our inference on the 2SLS estimates. The estimates based on the
alternative neighborhood concept are comparable to the previous ones. the spillovers
from firms in the same district/county remain significant, but slightly weaker. The
spillovers from neighboring areas remain insignificant. Among the exogenous regres-
sors, the specialization index is again insignificant, while all other regressors are highly
significant with expected signs.

4.2 Urban districts and distance

The baseline model shows strong and significant technological spillovers among firms
in the same district/county. It also shows that the spillovers become much weaker
and insignificant when the spatial linkage is extended to include firms in neighboring
areas. This section further investigates the key socioeconomic or geographic factors
behind these spillover effects. The first factor that comes to our mind is China’s
administrative division. For historical reasons, urban districts and counties are very
different in socioeconomic characteristics. The traditional urban districts serve as the
administrative and economic centers of prefecture-level cities. They are small in area,
but equipped with high quality public infrastructure. Starting from the early ’90s, a
new type of urban districts emerged. They are upgraded from counties to host the

17The two-stage GMM procedure is computationally burdensome. For every bootstrap sample,
the GMM criterion function has to be minimized twice. It took roughly 100 minutes to finish 50
repetitions on modern hardware.

18A formal Hausman test on the random effects specification demands theoretical development on
the joint distribution of δ̂W and δ̂R, which hasn’t been accomplished at this stage. Given the huge
difference between the two sets of estimates, the random effects specification is not likely to survive
such a test.
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growing body of manufacturing firms. Since their birth, these urban districts have
experienced rapid growth in industrial output, employment, and infrastructure. Some
of them have grown into new urban centers. Compared to counties or county-level
cities, both types of urban districts have a much higher concentration of firms and
employment, but smaller geographic areas (table 2).19 The distinction suggests that
the spillover effects studied in the baseline model may behave differently in urban
districts and counties.

We divide the sample into two sub-samples by administrative type, and run the
baseline regression on them. The estimates are reported in table 6. The numbers in
the first column are taken from table 5 (column FE-IV). The second and third columns
report estimates from the sub-samples. There is a sharp contrast in the estimated
AR coefficients. λ1 is highly significant in both samples, but the estimate is smaller
in the urban sample. λ2 estimated from the urban sample is much more significant
and larger in size than that of the county sample. To formally test whether the AR
coefficients are different between the sub-samples, we introduce a dummy variable
(county) for counties and make it interact with W1tfp and W2tfp.

20 The estimates
are reported in column 4. Clearly, the difference in λ1 is highly significant. We also
perform the analysis using the contiguity based neighbor relationship (table 7). There
we observe the same pattern.

Judged by these estimates, the spatial autoregressive structure is very different in
urban districts and counties. Firms in urban districts are subject to both types of
spillover effects (intra-regional and inter-regional). The estimates of λ1 and λ2 are
comparable in size because the two effects are equally potent. For firms in counties,
the inter-regional spillover effect is very weak in size and significance. Therefore,
the intra-regional effect plays the dominant role, and λ1 is large in size. An easy
explanation to this observation can be based on the special role of urban districts in
China’s administrative hierarchy. They are designated regional hubs, and they have
tight economic linkages with the rest of the prefecture, including their neighbors.
Counties are stand-alone administrative units under the prefecture. Consequently
such inter-regional linkages are far weaker for counties.

The NEG theory suggests another factor that may also explain the urban-county
difference: distance. Urban districts are on average much smaller in area than coun-
ties. Consequently, they are closer to their neighbors in space. Firms located in urban
districts are subject to both types of spillovers, but the those located in counties are
hardly affected by inter-regional spillovers because of greater distance. This argu-
ment also suggests significant λ1 and λ2 for urban districts (smaller area); a large
and significant λ1 for counties (larger area). In order to ascertain the true mechanism
behind the urban-county difference, we need to conduct a similar investigation into
the second argument.

We sort all 2866 administrative units by area. The lower 50% are marked as

19The 2005-2007 sub-sample consists of 538 urban districts and 483 counties or county-level cities.
They host 9539 and 5815 firms (annual average) in sector 3900, respectively.

20At the same time, the set of instruments are expanded to include their interactions with the
dummy variable.
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small, and the rest are marked as large.21 We then construct a dummy variable large
to identify the large administrative units. It can be seen from table 3 that 75% of the
administrative units in the sample are small ones, hosting roughly 73% of the firms.
Evidently the majority of urban districts are small, but over 50% of the counties are
also small. The sample correlation between county and large is 0.269. Despite the
overlap, they actually measure different concepts.

The following analysis is similar to what we have done previously. We run the
baseline model on the sample of small administrative units, then on the sample of large
ones. Then we let large interact with W1tfp and W2tfp and run the regression on
the full sample. The results are reported in tables 8 and 9. The pattern is strikingly
similar to that of tables 6 and 7. λ1 is highly significant in all specifications, and
significantly smaller in size for small administrative units. λ2 is significant in the
sample of small administrative units but insignificant in the other sub-sample. The
difference in λ2 is again significant. The evidence thus strongly supports the distance-
based argument.

We thus find independent evidence that administration type and spatial area are
factors that influence the spillover effects on districts/counties. They are related,
though not identical concepts. A regression model that accounts for both factors
helps to reveal the true causal effect, or at least, which factor is relatively more
important. We thus include the interactions of W1tfp and W2tfp with both county
and large. The estimates are reported in the last column of tables 8 and 9. The
results are mixed. In table 8, where neighborhood is defined by the 50 km criterion,
the interactions with W1tfp are significant but those interacting with W2tfp are
not. It indicates that both administration type and spatial size matters for λ1, which
is smaller in size in urban districts and/or smaller administrative units. When we
switch to contiguity based neighborhood, W1tfp and W2tfp interacting with large
are significant. Surprisingly, the interaction of W2tfp and county is significant but
the sign is hard to explain: It seems that counties benefit more from inter-regional
spillovers than urban districts, controlling for spatial area. Except for this parameter,
other estimates are all consistent with the previous ones. We conclude that both
administration type and size jointly determines the strength of productivity spillovers.

5 Concluding remarks

In this article, we analyze the determinants of firm-level productivity in China’s
electric apparatus industry. The geolocational information provided by the China
Industrial Survey data set allows us to perform a joint estimation of intra-regional
and inter-regional effects with a spatial autoregressive model. Because of theoretical
limitations, not all spatial econometric methods can be applied to the unbalanced
panel data set. We show that the Kelejian and Prucha (1998) fixed effect 2SLS
estimator and the Mutl and Pfaffermayr (2011) random effect FG2SLS estimator can
be modified to use an unbalanced panel. The empirical estimates of our baseline
model reveal strong correlation between the individual effects and the exogenous

21The 50% quantile is 1552 square kilometers.
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regressors. The individual effects are also found to be large in size compared to
the error terms. Based on these observations, we choose the fixed effects model for
subsequent analyses.

Estimates of the baseline model shows strong spillovers among firms in the same
district/county, while the spillover effects among neighboring administrative units are
found to be small in size and insignificant. R&D and exports are found to contribute
to higher productivity. Firms also benefit from favorable local market conditions,
including competitiveness and public expenditure. However, specialization has little
impact on the productivity of local firms. The market conditions in neighboring
districts/counties have similar effects on productivity, but to a less extent.

The analyses on different types of administrative units reveal more information on
the spillover effects. The special administrative and economic role of urban districts
allows firms to interact more with peers in neighboring regions; while firms in small ad-
ministrative units also have more inter-regional interactions because of shorter spatial
distance. The empirical findings support both views. Although the spillover effects
diminish in space, firms in urban districts or small administrative units benefit more
from inter-regional spillovers because of their advantageous location.

The current research can be extended to provide more methodological rigor or
empirical evidence. As we explained in section 2.4, the Kelejian-Prucha type within
estimator is in capable of addressing the autoregressive structure in the error com-
ponent if the panel is unbalanced. Consequently, our fixed effects model (10) has
non-spherical error terms, which make the 2SLS estimator inefficient. A GMM pro-
cedure that estimates all parameters in (7) will restore efficiency, regardless of data
type. On the other hand, Mutl and Pfaffermayr’s (2011) Hausman test could be
extended to unbalanced panels. Such a test can be constructed from the 1st stage
within estimator and the random effects FG2SLS estimator.

The China Industry Survey data set provides a broad range of opportunities for
empirical study. It would be interesting to see how the factors identified in the cur-
rent study work on other industrial sectors. Another interesting topic is ownership
structure. A large fraction of China’s industrial firms are SOEs, which have gained
increasing control over the market in recent years. Private firms and foreign-owned
firms may differ substantially from SOEs in their capacities in generating or ab-
sorbing technological spillovers. A study on this topic could have important policy
implications. Finally, the current study identifies public expenditure as a source of
productivity growth, but it remains unclear how different types of public expenditure
contribute to productivity. Further investigations is needed to cast some light on this
question.
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A Data preparation

A.1 The China Industry Survey Data Set

The China Industry Survey data set is known (Nie, Jiang, and Yang, 2012) to contain numerous
errors and internal inconsistencies. A major challenge we face is the identification problem: Even
though the raw data provides detailed information on firm ID, geolocation, and industrial sector of
each establishment, in many cases their values are non-unique in the survey period. The obscurity is
caused by recording errors and revisions in the coding system. These key identifiers must be cleaned
before we can build a longitudinal data set. Our data-cleaning procedure is described below.

Create the unique ID
Each observation (establishment) is jointly identified by the organization code and the name

of the business. The organization code is the official identification issued by the registration office,
which should remain unchanged throughout the life cycle of the establishment. On the other hand,
the name of the business is supposed to be unique but is subject to change over time. To resolve
the indeterminacy in organization codes, we adopt the matching procedure proposed by Nie, Jiang,
and Yang (2012) as follows.

1. Pool the observations from all annual data sets, and group them by organization code. The
observations in each group share the same organization code. If observations from the same
group have more than one business names, it indicates that the establishment changed its
business name in the corresponding year.

2. For each group G constructed in the previous step, find other groups that has at least one
observation sharing the same business name with an observation from group G. Once these
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groups are identified, append them to G, and remove duplicated observations from the re-
sulting group G′.22 The updated group G′ may contain more than one organization codes.

3. Repeat the previous step until the group structure no longer changes, then remove all dupli-
cated groups. Each of the remaining group represents a unique establishment in the longitu-
dinal data, to which an unique ID is assigned. We use the organization code associated with
the group as the unique ID.

The raw data consists of 658213 unique organization codes over 1996-2010. The algorithm
converges in three iterations, retaining 620020 groups. The numbers indicate that 6% of full sample
might have been misidentified as independent establishments without this treatment.23

Among the 620020 unique establishments identified in the previous step, 8825 have multiple
observations in one or more years. About half of them (4429) have more than two observations
but only one multiplicity, in which case we compare the values of accounting and financial variables
with those in adjacent years. The observation with a closer match is chosen and the other one is
discarded. The observations associated with the remaining 4329 establishments are discarded.24

Identify the geolocation
The geolocation of each establishment is identified by a six-digit administrative code. The

data sets provide the six-digit (1996-2003) or twelve-digit (2004-2010) administrative code plus the
six-digit zip code for each observation. The first six digits of the administration code define an
administrative unit in the district/county level, while the last six digits define the township and
community. In this study, we use the first six digits to identify the location of each establishment.
We clean the data on administrative codes by the following procedure:

1. The administrative codes in the data are formatted with different versions of the GB/T 2260
standard.25 We construct a junction table that maps earlier versions of the map code into
the 2007 revision. All valid administrative codes are then converted into the values specified
by the 2007 revision of the national standard (GB/T 2260-2007).

2. For the 16771 observations that do not have valid administrative codes, we constructed a
table that maps 37249 zip codes to six-digit administrative codes (2007 version). Their
administrative codes are then recovered from zip codes if the latter can be found in our
mapping table.

3. If the previous steps result in a unique administrative code for an establishment in all years,
it is used to identify the geolocation. 30811 establishments are found to have multiple values,
in which case we choose the most frequent one.

Identify the industrial division
The industrial division of each establishment is identified by a four-digit industry code. The data

set uses two different coding systems: GB/T 4754-1994 until 2002 and GB/T 4754-2002 afterwards.
Old industry codes are mapped to their new values specified by GB/T 4754-2002. Similar to what we
did to administrative codes, the industry codes are further cleaned so that all observations associated
with an establishment are assigned a unique industry code.

22Note that a group may be simultaneously appended to multiple groups, and that the group-
combining operation may result duplicated groups that have identical set of observations.

23As far as the organization code and business name are changed one at a time, the iterated match-
ing procedure is able to track down the same establishment over time, even if multiple changes take
place in succession. However, the algorithm fails whenever an establishment changes the organization
code and business name at the same time.

242047 establishments have only two observations, both of which are recorded in the same year.
25The administrative divisions have undergone four major revisions in 1995, 1999, 2002, and 2007.

Each time, a large number of administrative divisions were either renamed, merged, split, or (newly)
created. In most cases, the administrative division affected was assigned a new six-digit code. The
old administrative code was abolished and won’t be used in the future. The 1995 revision of the code
map, GB/T 2260-1995 consists of 3404 distinct administrative codes, 1200 of which were revoked
by 2007. The changes being made are tabulated in the appendix of the publication.
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A.2 The Budgetary Expenditure Data Set

There are two major issues with the fiscal data. First, it uses a different administrative division than
the one specified by the official code map. Data loss is inevitable when we merge data. Nevertheless,
we are able to retain most of the administrative units in the district/county level.26 The city of
Shenzhen was treated as one piece by the yearbook until 2007. The city is known to be a major
manufacturing hub in the Pearl River Delta, hosting a large number of firms. In order to retain
these observations in our sample, we treat the five urban districts of Shenzhen as one administrative
unit. Second, the expenditure categories were revised twice during the study period, first in 2003
and then in 2007. As a result, the variables on expenditure types are not compatible in different
issue of the yearbook, except for total budgetary expenditure.

26The number of dropouts ranges from 124 in 1999 to 34 in 2006.
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Table 4: The base model: contiguous districts/counties treated as neighbors, 84727
observations on 26174 distinct firms

Dependent variable: tfp

regressor FE1 FE-IV2 FE-GMM2 RE-FG2SLS
W1 tfp 0.185** 0.403** 0.410** 0.673**

(0.011) (0.074) (0.075) (0.008)
W2 tfp 0.130** 0.111 0.118 0.134**

(0.013) (0.096) (0.092) (0.008)
rd 0.181** 0.192** 0.185** 0.389**

(0.027) (0.030) (0.029) (0.016)
ex 0.083** 0.088** 0.087** 0.070**

(0.025) (0.028) (0.028) (0.009)
spec 0.019* -0.006 -0.006 -0.011**

(0.009) (0.014) (0.014) (0.002)
comp -0.634** -0.832** -0.863** 0.132**

(0.075) (0.123) (0.123) (0.015)
pub 0.234** 0.137** 0.132** -0.009**

(0.013) (0.036) (0.036) (0.003)
W2 spec -0.030** -0.021 -0.019 -0.035**

(0.009) (0.013) (0.013) (0.002)
W2 comp -0.573** -0.421** -0.400** 0.031*

(0.077) (0.135) (0.133) (0.017)
W2 pub 0.030** 0.019** 0.018** -0.002

(0.005) (0.006) (0.006) (0.002)
Intercept 1.477** 1.279** 1.234** 1.261**

(0.139) (0.159) (0.158) (0.040)
R2 0.13 0.12 — 0.73
σ̂µ 1.166 1.137 — 1.399
σ̂u (σ̂ε)

3 0.666 0.671 — 0.560
ρ̂ — — — -0.962
Significance codes: ‘**’ 0.05, ‘*’ 0.10

1Clustered standard errors in parentheses
2Bootstrapped standard errors in parentheses
3In columns (FE) and (FE-IV), the numbers are standard errors of Q0u in (10); in column

(RE-FG2SLS), the number is σ̂ε estimated by (16).
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Table 5: The base model: districts/counties within 50 kilometers treated as neighbors,
81331 observations on 24903 distinct firms

Dependent variable: tfp

regressor FE1 FE-IV2 FE-GMM2 RE-FG2SLS
W1 tfp 0.163** 0.354** 0.360** 0.592**

(0.011) (0.066) (0.070) (0.010)
W2 tfp 0.181** 0.088 0.087 0.188**

(0.015) (0.081) (0.078) (0.009)
rd 0.179** 0.186** 0.178** 0.465**

(0.027) (0.027) (0.027) (0.017)
ex 0.083** 0.087** 0.086** 0.055**

(0.025) (0.026) (0.026) (0.009)
spec 0.020** -0.004 -0.004 -0.002

(0.009) (0.011) (0.011) (0.002)
comp -0.590** -0.776** -0.808** 0.118**

(0.074) (0.104) (0.111) (0.017)
pub 0.210** 0.168** 0.168** -0.020**

(0.013) (0.036) (0.034) (0.003)
W2 spec -0.042** -0.022 -0.019 -0.050**

(0.009) (0.016) (0.016) (0.002)
W2 comp -0.743** -0.524** -0.495** 0.055**

(0.081) (0.122) (0.127) (0.020)
W2 pub 0.023** 0.019** 0.019** -0.003

(0.004) (0.007) (0.006) (0.002)
Intercept 1.689** 1.498** 1.468** 1.524**

(0.141) (0.191) (0.198) (0.042)
R2 0.14 0.13 — 0.70
σ̂µ 1.140 1.133 — 1.325
σ̂u (σ̂ε)

3 0.663 0.667 — 0.588
ρ̂ — — — -0.824
Significance codes: ‘**’ 0.05, ‘*’ 0.10

1Clustered standard errors in parentheses
2Bootstrapped standard errors in parentheses
3In columns (FE) and (FE-IV), the numbers are standard errors of Q0u in (10); in column

(RE-FG2SLS), the number is σ̂ε estimated by (16).
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Table 6: Spillover effects on urban districts and counties: districts/counties within
50 kilometers treated as neighbors.

Dependent variable: tfp1

regressor baseline urban districts counties full model
W1 tfp 0.354** 0.204** 0.587** 0.246**

(0.066) (0.079) (0.097) (0.065)
W2 tfp 0.088 0.203** 0.092 0.135**

(0.081) (0.101) (0.099) (0.068)
interactions:
W1 tfp×county — — — 0.343**

(0.066)
W2 tfp×county — — — -0.088

0.057
rd 0.186** 0.157** 0.206** 0.176**

(0.027) (0.039) (0.037) (0.028)
ex 0.087** 0.053* 0.154** 0.084**

(0.026) (0.031) (0.040) (0.025)
spec -0.004 0.000 0.004 -0.002

(0.011) (0.018) (0.015) (0.010)
comp -0.776** -0.511** -0.987** -0.733**

(0.104) (0.126) (0.152) (0.101)
pub 0.168** 0.136** 0.162** 0.157**

(0.036) (0.039) (0.034) (0.030)
W2 spec -0.022 -0.023 -0.035* -0.020

(0.016) (0.017) (0.019) (0.014)
W2 comp -0.524** -0.480** -0.720** -0.503**

(0.122) (0.134) (0.217) (0.107)
W2 pub 0.019** 0.026** -0.021** 0.021**

(0.007) (0.006) (0.010) (0.006)
Intercept 1.498** 1.979** 0.316 1.358**

(0.191) (0.199) (0.315) (0.179)
N 81331 51480 29851 81331
n 24903 15575 9328 24903
R2 0.13 0.10 0.18 0.13
σ̂µ 1.133 1.144 1.114 1.404
σ̂u 0.667 0.699 0.605 0.667
Significance codes: ‘**’ 0.05, ‘*’ 0.10

1All regressions estimated by fixed effects 2SLS, bootstrapped standard errors in parentheses.
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Table 7: Spillover effects on urban districts and counties: contiguous units treated as
neighbors.

Dependent variable: tfp1

regressor baseline urban districts counties full model
W1 tfp 0.403** 0.320** 0.542** 0.314**

(0.074) (0.071) (0.112) (0.071)
W2 tfp 0.111 0.137* 0.175 0.135

(0.096) (0.082) (0.140) (0.084)
interactions:
W1 tfp×county — — — 0.300**

(0.067)
W2 tfp×county — — — -0.037

(0.070)
rd 0.192** 0.167** 0.213** 0.183**

(0.030) (0.030) (0.044) (0.029)
ex 0.088** 0.057** 0.149** 0.085**

(0.028) (0.026) (0.029) (0.027)
spec -0.006 -0.016 0.014 -0.004

(0.014) (0.015) (0.019) (0.014)
comp -0.832** -0.643** -0.944** -0.791**

(0.123) (0.099) (0.153) (0.117)
pub 0.137** 0.121** 0.123 0.124**

(0.036) (0.036) (0.088) (0.032)
W2 spec -0.021 -0.014 -0.046** -0.023**

(0.013) (0.014) (0.022) (0.012)
W2 comp -0.421** -0.359** -0.588** -0.405**

(0.135) (0.123) (0.198) (0.123)
W2 pub 0.019** 0.026** -0.012 0.023**

(0.006) (0.008) (0.012) (0.006)
Intercept 1.279** 1.793** 0.045 1.168**

(0.159) (0.198) (0.257) (0.153)
N 84727 54513 30214 84727
n 26174 16679 9495 26174
R2 0.12 0.12 0.19 0.12
σ̂µ 1.137 1.147 1.100 1.398
σ̂u 0.671 0.705 0.603 0.672
Significance codes: ‘**’ 0.05, ‘*’ 0.10

1All regressions estimated by fixed effects 2SLS, bootstrapped standard errors in parentheses.
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Table 8: Spillover effects on small and large administrative units: units within 50
kilometers treated as neighbors.

Dependent variable: tfp1

regressor baseline small admins large admins model 1 model 2
W1 tfp 0.354** 0.286** 0.584** 0.277** 0.219**

(0.066) (0.087) (0.104) (0.056) (0.058)
W2 tfp 0.088 0.196** -0.065 0.141* 0.117*

(0.081) (0.096) (0.087) (0.080) (0.070)
interactions:
W1 tfp×large — — — 0.400** 0.317**

(0.070) (0.083)
W1 tfp×county — — — — 0.163**

(0.075)
W2 tfp×large — — — -0.162** -0.137

(0.073) (0.091)
W2 tfp×county — — — — 0.035

(0.073)
rd 0.186** 0.206** 0.099** 0.176** 0.170**

(0.027) (0.029) (0.038) (0.027) (0.028)
ex 0.087** 0.079* 0.116** 0.092** 0.088**

(0.026) (0.033) (0.040) (0.025) (0.025)
spec -0.004 -0.020 0.004 -0.016* -0.009

(0.011) (0.013) (0.023) (0.009) (0.010)
comp -0.776** -0.725** -0.869** -0.759** -0.709**

(0.104) (0.133) (0.190) (0.090) (0.091)
pub 0.168** 0.121** 0.209** 0.147** 0.164**

(0.036) (0.042) (0.062) (0.038) (0.032)
W2 spec -0.022 -0.018 -0.050** -0.024* -0.025*

(0.016) (0.016) (0.020) (0.014) (0.013)
W2 comp -0.524** -0.574** -0.403* -0.511** -0.526**

(0.122) (0.131) (0.222) (0.098) (0.098)
W2 pub 0.019** 0.004 0.023** 0.012* 0.017**

(0.007) (0.008) (0.009) (0.006) (0.006)
Intercept 1.498** 1.923** 0.474* 1.577** 1.493**

(0.191) (0.180) (0.282) (0.176) (0.166)
N 81331 60463 20868 81331 81331
n 24903 18358 6545 24903 24903
R2 0.13 0.11 0.20 0.13 0.13
σ̂µ 1.133 1.118 1.136 1.384 1.507
σ̂u 0.667 0.681 0.619 0.667 0.666
Significance codes: ‘**’ 0.05, ‘*’ 0.10

1All regressions estimated by fixed effects 2SLS, bootstrapped standard errors in parentheses.
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Table 9: Spillover effects on small and large administrative units: contiguous units
treated as neighbors.

Dependent variable: tfp1

regressor baseline small admins large admins model 1 model 2
W1 tfp 0.403** 0.278** 0.679** 0.298** 0.278**

(0.074) (0.083) (0.161) (0.075) (0.071)
W2 tfp 0.111 0.261** -0.023 0.218** 0.178**

(0.096) (0.096) (0.108) (0.098) (0.084)
interactions:
W1 tfp×large — — — 0.438** 0.520**

(0.077) (0.086)
W1 tfp×county — — — — -0.034

(0.078)
W2 tfp×large — — — -0.227** -0.373**

(0.085) (0.098)
W2 tfp×county — — — — 0.247**

(0.085)
rd 0.192** 0.202** 0.142** 0.184** 0.179**

(0.030) (0.036) (0.034) (0.030) (0.030)
ex 0.088** 0.075** 0.122** 0.093** 0.093**

(0.028) (0.034) (0.037) (0.027) (0.027)
spec -0.006 -0.013 0.001 -0.015 -0.007

(0.014) (0.014) (0.032) (0.013) (0.014)
comp -0.832** -0.707** -1.006** -0.796** -0.754**

(0.123) (0.127) (0.196) (0.120) (0.116)
pub 0.137** 0.097** 0.127 0.103** 0.108**

(0.036) (0.036) (0.082) (0.033) (0.028)
W2 spec -0.021 -0.026* -0.042** -0.029** -0.032**

(0.013) (0.014) (0.021) (0.012) (0.012)
W2 comp -0.421** -0.481** -0.418** -0.436** -0.447**

(0.135) (0.118) (0.203) (0.124) (0.115)
W2 pub 0.019** 0.008 0.020 0.011* 0.014**

(0.006) (0.007) (0.013) (0.006) (0.006)
Intercept 1.279** 1.692** 0.385* 1.316** 1.258**

(0.159) (0.168) (0.233) (0.142) (0.146)
N 84727 60218 24509 84727 84727
n 26174 18324 7850 26174 26174
R2 0.12 0.10 0.17 0.12 0.12
σ̂µ 1.137 1.114 1.172 1.373 1.465
σ̂u 0.671 0.683 0.638 0.671 0.672
Significance codes: ‘**’ 0.05, ‘*’ 0.10

1All regressions estimated by fixed effects 2SLS, bootstrapped standard errors in parentheses.
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Figure 1: District/county subtotal: number of firms in sector 3900, 2005-2007 average.

Figure 2: District/county subtotal: employment in sector 3900, 2005-2007 average.
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Figure 3: District/county average TFP in sector 3900, futher averaged over 2005-2007.

Figure 4: District/county average new product-total ouput ratio in sector 3900, futher
averaged over 2005-2007.
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Figure 5: District/county average export-sales ratio in sector 3900, futher averaged
over 2005-2007.

Figure 6: District/county specialization index in sector 3900, futher averaged over
2005-2007.
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Figure 7: District/county Herfindahl-Hirschman index in sector 3900, futher averaged
over 2005-2007.

Figure 8: District/county total budgetary expenditure (log-transformed) in sector
3900, futher averaged over 2005-2007.

36


