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innovation, and a concentration effect spurring innovators. It is obtained
in a sectoral model where the number of innovators is random and where
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1 Introduction
The relationship between product market competition and innovation is not
simple to assess, either empirically or theoretically. It varies according to the
market, the industry or the innovation characteristics. Following the Schum-
peterian view (Schumpeter, 1942), monopoly rent is required to support inno-
vative activity and tougher competition on the product market has a negative
impact on innovation. This conclusion is contrary to the “Darwinian” view, for
which competition is needed to force firms to innovate in order to survive, or
to the view that “the incentive to invent is less under monopolistic than under
competitive conditions” (Arrow, 1962).1

Two types of theoretical models have been developed to examine the is-
sue, tournament and non-tournament models. In tournament models, research
competition is described as a stochastic “patent-race” (Reinganum, 1985 and
1989) among a fixed number of firms and, for each firm, investment in R&D-
intensity (a Poisson hazard rate) increases the chances that it innovates and
takes the lead temporarily, until a new innovator, possibly capitalizing on ac-
cumulated knowledge, wins and “leapfrogs” the leader. In this kind of model,
more competition, in the sense of a larger number of firms, is good for innova-
tion since discovery is then expected earlier. In non-tournament deterministic
models (Dasgupta and Stiglitz, 1980), firms compete both at the research level
(in order to reduce their production costs) and in the product market, and the
number of firms is endogenously determined taking into account the R&D fixed
cost. More competition, in the sense of a larger number of investing firms, is
now bad for innovation: it implies a lower industry R&D-investment. There-
fore, considering the two types of theoretical models, the Schumpeterian view
can neither be generally validated nor invalidated. Empirical evidence is not
conclusive either. For example, Link and Lunn (1984) exhibit a positive effect
of concentration on the returns to R&D for process innovation (supporting non-
tournament models) whereas Geroski (1995), Nickell (1996), Blundell, Griffith
and Van Reenen (1999) find a negative effect of concentration on innovation.2

Of course, one should be cautious in using concentration as a measure of com-
petitiveness. To illustrate the point, it suffices to look at the non-tournament
model of van de Klundert and Smulders (1997) and their comparison of different
regimes of oligopolistic competition (i.e. Bertrand vs. Cournot). They exhibit
a “concentration effect” by which the number of firms is reduced when com-
petition is tougher, implying larger firm size and higher rates of innovation.3

Hence competition is a spur for innovation because it increases concentration
and, hence, the incentive to innovate.4

1Tirole (1997) calls this the “replacement effect”: the profits that are replaced by those
resulting from innovation are larger for a monopoly.

2For more references and a discussion of these results see Gilbert (2006).
3This concentration effect of competition, resulting from the endogenous reduction of the

number of firms, is a known paradox for anti-trust policy. See d’Aspremont and Motta (2000).
4 In a similar model, studying the interdependence of market structure and growth, the

same positive association between competition toughness and growth is obtained by Peretto
(1999), also through industry concentration.
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In empirical studies, there has been another line of research, looking for a
non-monotone relationship between competition and innovation, and which can
be traced back to Scherer (1965, 1967) who showed that the effect of firm size
on patented inventions was diminishing for large sizes5. An inverted-U relation-
ship between competition and innovation was further explored6 by Levin et al.
(1985) and, recently, re-examined in a panel study by Aghion et al. (2005), who
obtain a clear inverted-U shape when plotting patents against the Lerner index.
Moreover, building upon previous work7, they provide a theoretical explanation.
Our goal here is to propose an alternative theoretical model of product mar-

ket competition and innovation explaining such a non-monotone relationship.
This is done in a framework combining features of tournament models and non-
tournament models. As in tournament models, the expected incremental gain
of innovating creates the incentive for R&D-investment by firms, and each in-
dustry can be partitioned into successful and unsuccessful firms. However, a
special feature of our model is that we allow for multiple simultaneous innova-
tors. As in non-tournament models, the concentration effect plays an essential
role, not only through the variation of the number of (identical) firms, but also
by taking into account the distribution of market shares between successful and
unsuccessful (incremental) innovators.8

Firms have a two-period life, competing first at the research and then at
the production levels. They are all symmetric in the first period of their lifes,
having equal access to technological knowledge and capital (all industries start
neck-and-neck). R&D-investment by each firm determines its probability of
innovating. In the second period firms compete in the product market under
some competition regime belonging to a continuum between the Cournot and
Bertrand regimes. As in Arrow (1962), the key notion is the “incentive to invent”
represented here by the “incremental gain of innovating”, that is, the difference
for an investing firm between the profit it earns when successful and the one it

5Dasgupta and Stiglitz (1980) referring to the earlier empirical literature surveyed in
Scherer (1970) and Kamien and Schwartz (1975), already stressed that innovative activity
may become negatively correlated to concentration when an industry is too concentrated.

6 In one study the authors find a significant inverted-U relationship between industry
concentration and R&D-intensity or the innovation rate. In another study, including more
variables, the statistical significance of the concentration variable (C4 index) is much lower.
“These econometric studies suggest that whatever relationship exists at a general economy-
wide level between industry structure and R&D is masked by differences across industries in
technological opportunities, demand, and the appropriability of inventions” (Gilbert, 2005,
p.37).

7 See Aghion, Harris and Vickers (1997), and Aghion, Harris, Howitt and Vickers (2001).
The latter has been extended by Encaoua and Ulph (2000), allowing for the possibility that
the lagging firm leapfrogs the leader without driving it out of the market, and also obtaining
a non-monotone relationship between competition and innovation. Aghion, Dewatripont and
Rey (1999) introduce agency considerations with non-profit maximizing firms leading to non-
Schumpeterian conclusions. A synthesis of this stream of the literature is provided by Aghion
and Griffith (2005).

8Thompson and Waldo (1994) discuss the two kinds of innovative capitalism described by
Schumpeter (1928) - “competitive capitalism”, under which only the innovative firm remains
active in the market, and “trustified capitalism”, where loosing firms may remain active - and
argue that, empirically, trustified capitalism is more important than competitive capitalism.
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earns when unsuccessful. This incremental gain is introduced as a function of a
continuous variable representing “competitive toughness” and allowing to com-
pare different competition regimes.9 As a function of competitive toughness,
the incremental gain of innovating is affected by two opposite effects, a negative
“markup squeezing effect”, clearly Schumpeterian, and a positive concentration
effect. Our basic result is to show that, under some conditions, it exhibits an
inverted-U shape. Under soft competition, and assuming that innovators obtain
only a small cost advantage,10 unsuccessful firms remain active at equilibrium.
Then the gap between market shares of the two groups of firms increases with
competitive toughness, implying that concentration as measured by an index
such as Herfindahl increases (other things equal) and that the incentive to in-
vest in R&D, evaluated by the expected incremental gain of innovating, also
increases. At some level of competitive toughness, though, unsuccessful firms
are eliminated, competition becomes symmetric, thus eliminating any further
gain in market shares, so that the incentive to invest eventually decreases with
higher competitive toughness. On this basis we show the possibility of obtaining
a non-monotone relationship between R&D-investment and competitive tough-
ness (increasing when competition is soft and decreasing when it is tough) first
in a single sector partial equilibrium model with a fixed number of firms, then
in a multi-sectoral endogenous growth model where the number of firms in each
sector is endogenously determined.
This will allow us to compare our explanation of a non-monotone relation-

ship between competition and innovation with the theoretical explanation of the
inverted-U pattern given by Aghion et al. (2005). In their theoretical model,
they suppose a fixed number of firms (a duopoly) in each industry, competing
both at the research and the production levels, but the set of industries can be
partitioned into two types of industries: those where the two firms are at the
same technological level (neck-and-neck), and those where one firm leads and
the other lags.11 In a neck-and-neck industry, R&D intensity increases with
product market competition because firms invest in R&D to escape competi-
tion (the “escape competition effect”). Only in an unleveled industry, can the
traditional “Schumpeterian effect” dominate (and will dominate when product
market competition is sufficiently tough): as there is no incentive for the leader
to invest in R&D (because of an assumed automatic catching up by the fol-
lower), only the laggard firm innovates, its chosen R&D-intensity decreasing as
competition becomes tougher in the product market, dissipating the rents that

9See d’Aspremont, Dos Santos Ferreira and Gérard-Varet (1991), and d’Aspremont and
Dos Santos Ferreira (2006), linking competitive toughness with the conduct parameter method
used in the new industrial organization literature (Bresnahan, 1989).
10This supposes a small innovation step or imperfect patent protection (large spillovers).
11 In a preliminary version of their paper, Aghion, Bloom, Blundell, Griffith and Howitt had

each duopoly producing differentiated products, and the degree of product market competition
was measured by the degree of product substitutability. In the published version, each firm
produces the same good and the degree of product market competition is measured by one
minus the degree of collusion of the two firms in a neck-and-neck industry. This is close to the
model already analysed in Encaoua and Ulph (2000), where conjectural variations are used to
formalize the degree of collusion in each duopoly.
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can be captured after innovation. It is then by averaging R&D-intensities across
all industries, that an inverted U-relationship between the (average) innovation
rate and product market competition is obtained (through a “composition ef-
fect”).12

In section 2, we introduce a one-sector model and give the definition of
the oligopolistic two-stage game under different regimes of competition. We
then present the basic non-monotonicity results. In section 3, we extend the
model to a continuum of sectors and analyze the consequences of the basic
non-monotonicity results in this general setting where the number of firms is
endogenously determined. We conclude in section 4.

2 A representative oligopolistic sector
Let us start by considering a typical industry involving a set N of N firms.
Suppose first that each firm j has already chosen its level of investment in
R&D, and that uncertainty on innovation is resolved, resulting in a partition of
the industry into successful and unsuccessful firms. Each firm j has to choose a
price-output pair (pj , yj). Output yj can be produced at unit cost cj . This unit
cost takes three values: the lowest one for successful firms, an intermediate value
for non-successful firms benefitting from innovators’ spillovers, and the highest
value when no firms are successful. The demand D for the good is a function of
market price P , with a finite negative continuous derivative over all the domain
where it is positive. A particular specification of the demand function will be
introduced below. We let Y denote the total output

P
k yk, and Y−j =

P
k 6=j yk

the total output produced by firms other than j.

2.1 The oligopolistic equilibrium

Since our goal is to study the relationship between the degree of competition and
R&D-investment, we want to compare different competition regimes, including
Bertrand and Cournot, but also other intermediate regimes. This is common
practice in the New Empirical Industrial Organization (NEIO) literature where
“behavioral equations” are used to estimate firm behavior, in which the degree
of competitiveness of a firm is represented by a conduct parameter.13 From
a theoretical point of view, there are various ways to derive these behavioral
equations.14 We shall not here review all these various theories but shall rely
on the canonical, and Cournot-like, representation of oligopolistic competition
introduced in d’Aspremont and Dos Santos Ferreira (2006), and readily usable in

12Mukoyama (2003) also obtains an inverted-U relationship between competition and growth
in a tournament model which is close to Aghion et al. (2005). This model introduces the
possibility that a successful innovator be imitated by (at most) one other firm (following
a Poisson process). When imitation has succeeded the two firms engage in an innovation
race. Products are homogeneous and competition is in prices. The degree of competition is
measured by the proportion of two-leader industries.
13For a synthesis see Bresnahan (1989).
14 See Martin (2002)..
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the present framework15. How this canonical representation can be derived from
some more primitive theory of oligopoly will be illustrated below by a simple
example. In this canonical representation each firm j is assumed to choose a
price-output pair (pj , yj) in order to maximize its profit under two constraints
representing the competitive pressure coming respectively from inside and from
outside the industry. In the first constraint, firm j preserves its market share by
matching its competitors’ prices. In the second, firm j adjusts for the market
size. At equilibrium the consumers should not be rationed. Formally, a 2N -
tuple (p∗, y∗) is an oligopolistic equilibrium if, for each firm j,

¡
p∗j , y

∗
j

¢
is solution

to the program

max
(pj ,yj)∈R2+

½
(pj − cj) yj : pj ≤ min

k 6=j
{p∗k} and pj ≤ D−1

¡
yj + Y ∗−j

¢¾
, (1)

and satisfies the no-rationing condition

Y ∗ = D (P ∗) , with P ∗ = min
j

©
p∗j
ª
. (2)

The behavioral equations of the empirical literature coincide with the first
order conditions of this program. Introducing Kuhn and Tucker multipliers
(λj , νj) ∈ R2+ \ {0} associated with the first and second constraints in (1),
respectively, general first order conditions require, by the positivity of p∗j and
the nonnegativity of y∗j , that y

∗
j − λj − νj = 0, and p∗j − cj + νj/D

0 (P ∗) ≤ 0
with

¡
p∗j − cj + νj/D

0 (P ∗)
¢
y∗j = 0. Defining the normalized parameter θj ≡

λj/ (λj + νj) ∈ [0, 1], the first order conditions for the N∗ producing firms (with
p∗j = P ∗ and y∗j > 0) can then be expressed as a function of the θj ’s:

P ∗ − cj
P ∗

= (1− θj)
y∗j /Y

∗

− D (P ∗)
, (3)

where the left-hand side is firm j Lerner degree of monopoly and is the elas-
ticity operator.16 The θj ’s are determined endogenously at equilibrium and
correspond to the conduct parameters used in econometric estimations. The
multiplier λj , associated with the market share constraint, and the multiplier
νj , associated with the market size constraint, can be interpreted as the shadow
costs for firm j of relaxing the pressure coming from its competitors, respectively
inside and outside the industry. Each parameter θj is accordingly viewed as an
index of the competitiveness (or the competitive toughness) of firm j within the
industry.
But the parameters {θj} can also be exogenously fixed and a more primitive

game constructed. We give an illustrative example17 where, to simplify the
15See also d’Aspremont, Gérard-Varet and Dos Santos Ferreira (2006).
16For a differentiable function f (x),

f (x) ≡ df (x)

dx

x

f (x)
.

17Other examples are given in d’Aspremont and Dos Santos Ferreira (2006), respectively
based on meeting-competition clauses, supply function strategies, and socially oriented man-
agerial incentives.
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argument, we assume a demand elasticity larger than or equal to 1 in absolute
value. The game is in extensive form, with parameter θj ∈ [0, 1) taken as
the exogenous probability that firm j will adopt an aggressive rather than a
compromising conduct. At the first stage, each firm j quotes (simultaneously)
the maximum price pj at which it commits to sell up to quantity yj , to be
produced in advance. Then, Nature chooses a subset A of aggressive firms
in the set N of all firms according to the (independent) probabilities θj ’s. A
compromising firm j ∈ N\A supplies at quoted price pj a quantity xj which is
less than or equal to (in fact equality will prevail since production is in advance)
the minimum of the produced quantity yj and the residual demand, namely

max
h
D (pj)−

P
k∈N\{j} yk, 0

i
. By contrast, an aggressive firm j undercuts

its rivals by an arbitrarily low exogenous amount ε > 0, supplying at price
ψj (p) ≡ min [mink 6=j {pk}− ε, pj ] a quantity xj less than or equal to (in fact
equal to) the minimum of what it has produced and what it can confidently

expect to sell, namely the residual demand max
h
D
¡
ψj (p)

¢
−
P

k∈A\{j} yk, 0
i

with respect to the setA\{j} of aggressive rivals.18 We look for subgame perfect
equilibria with the additional condition Y ∗ = D (P ∗).
At the first stage, each firm j should take into account all possible partitions

between agressive and compromising firms, and maximize the following expected
profit (using the expectation operator E over the states in which it has an
aggressive conduct)19:

Πj (p, y, θ) = θjψj (p)E

⎛⎝min
⎧⎨⎩yj ,max

⎡⎣D ¡ψj (p)¢− X
k∈A\{j}

yk, 0

⎤⎦⎫⎬⎭
⎞⎠(4)

+(1− θj) pj min

⎧⎨⎩yj ,max

⎡⎣D (pj)− X
k∈N\{j}

yk, 0

⎤⎦⎫⎬⎭− cjyj .

Since, at equilibrium, ψj (p
∗) ≤ P ∗ = mink {p∗k} and Y ∗ = D (P ∗), we obtain,

for any A, D
¡
ψj (p

∗)
¢
−
P

k∈A\{j} y
∗
k ≥

P
k∈N y∗k −

P
k∈A\{j} y

∗
k ≥ y∗j , so that

Πj (p
∗, y∗, θ) = θjψj (p

∗) y∗j (5)

+(1− θj) p
∗
j min

©
y∗j ,max

£
D
¡
p∗j
¢
− Y ∗−j , 0

¤ª
− cjy

∗
j .

Now, there are two possible cases according to price p∗j being larger than or equal
to the minimum quoted price P ∗. If price p∗j > P ∗ = mink 6=j {p∗k}, the second
term in the RHS of equation (5) reduces to (1− θj) p

∗
j max

£
D
¡
p∗j
¢
− Y ∗−j , 0

¤
and should be (locally) maximized at p∗j (since ψj (p

∗) = P ∗− ε). However, the
residual demand pj

£
D (pj)− Y ∗−j

¤
is, under our assumption on demand elastic-

ity, a decreasing function of pj , and we obtain a contradiction. We conclude

18We also admit that firm j always chooses to produce, in case of indifference, the maximal
quantity yj it can sell.
19 So, when agressive, a firm j faces a state-dependent residual demand.
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that p∗j = P ∗ for any j. This price must (locally) maximize

[θj (P
∗ − ε) + (1− θj) pj − cj ]

£
D (pj)− Y ∗−j

¤
, (6)

so that we obtain at equilibrium the necessary first order condition:

P ∗ − cj
P ∗

= (1− θj)
y∗j /Y

∗

− D (P ∗)
+ θj

ε

P ∗
. (7)

As ε tends to zero, this condition eventually coincides with the corresponding
condition (3) of the canonical representation of oligopolistic competition, im-
plying the same set of (potential) equilibria. Cases where some of the θj ’s are
equal to 1 are taken as limit cases.
Whether endogenously or exogenously determined, we shall treat the θj ’s as

parameters indicating the relative degree of competition and use the first order
conditions (3) to investigate their impact on R&D-investment. However, this
analysis requires some simplifying assumptions.

2.2 The gain of innovating under varying toughness

A first simplifying assumption is to suppose a unit-elastic demand to the indus-
try,

D (P ) =
A

P
, (8)

with A and P positive and denoting respectively the sectoral expenditure and
the market price. A second simplification is to limit our analysis to the case
in which competitive toughness is the same for all producing firms20, that is,
θj = θ ∈ [0, 1] for any j. A third assumption is to let the unit cost of each firm
depend on its type (successful or unsuccessful) and to take into account the
possibility of incomplete appropriability by the innovators through a spillover
coefficient σ, 0 ≤ σ < 1. Formally, for c (.) a strictly decreasing function, we let

cj = c (δj) , (9)

with δj = 1, if j is successful, δj = 0 if no firm succeeds and δj = σ, if at
least one firm succeeds but not firm j. We denote by κ ≡ (c (σ)− c (1)) /c (σ)
the relative cost advantage of the innovators. Clearly, more spillovers, or less
appropriability of invention, decreases the relative cost advantage. Under these
assumptions, the first order condition (3) becomes:

1− c (δj)

P ∗
= (1− θ)

y∗j
Y ∗
, (10)

with Y ∗ = A/P ∗.

20Competitive toughness θ, as now defined, satisfies the axioms characterizing a measure of
the intensity of competition according to Boone (2001) definition (except for the normalization
axiom associating a zero θ with local monopoly).
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Consider first the symmetric case where firms are all unsuccessful. The
equilibrium price, as a function of the number n of successful firms, the number
N of competing firms and of competitive toughness θ, is easily computed to be

P (0, N, θ) =
Nc (0)

N − (1− θ)
. (11)

A second case is when n firms succeed (1 ≤ n ≤ N) and all N firms are active
at equilibrium. We then obtain the equilibrium price

P (n,N, θ) =
nc (1) + (N − n) c (σ)

N − (1− θ)
, (12)

provided P (n,N, θ) ≥ c (σ), or κ ≤ (1− θ) /n. For κ > (1− θ) /n, the innova-
tion is drastic, unsuccessful firms are eliminated, and we obtain the third case,
where only successful firms are active (getting equal market shares), the price
becoming:

P (n, n, θ) =
nc (1)

n− (1− θ)
. (13)

Observe that there is a borderline case where the competitive toughness is
just sufficient to eliminate unsuccessful firms, i.e.

θ = θL (n) ≡ max {1− nκ, 0} . (14)

We call this borderline case the limit-pricing regime. The corresponding θ varies
with n. It can be extended to the cases in which there are no successful firms
and in which all firms succeed, by taking the limit values of θL (n), denoted
respectively θL (0) (equal to 1 and corresponding to the Bertrand outcome) and
θL (N).
For the following analysis, it is convenient to introduce a specific notation

for market shares. For 0 < n ≤ N , we let m (1, n,N, θ) andm (σ, n,N, θ) denote
respectively the market share of a successful and an unsuccessful firm. From
equation (10) and the price equations, it is easy to verify that the equilibrium
market share is:

y∗j
Y ∗

= m (δj , n,N, θ) =
1

1− θ

µ
1− N − (1− θ)

nc (1) + (N − n) c (σ)
c (δj)

¶
(15)

or, using the notation κ and taking into account the case of drastic innovations
(with κ > (1− θ) /n),

m (1, n,N, θ) = min

½
1

1− θ

(N − n)κ+ (1− θ) (1− κ)

N − nκ
,
1

n

¾
, (16)

m (σ, n,N, θ) = max

½
1

1− θ

1− θ − nκ

N − nκ
, 0

¾
. (17)

When n = 0, we let m (σ, 0, N, θ) = m (0, 0, N, θ) = 1/N .
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Clearly m (1, n,N, θ) > m (σ, n,N, θ): the market share of a successful firm
is bigger than the market share of an unsuccessful one. Notice also that, for
0 < n < N and θ < θL (n), that is, when, given the competitive toughness, in-
novations are non drastic, the market share m (1, n,N, θ) is increasing whereas
m (σ, n,N, θ) is decreasing in θ, so that the gap in market shares between suc-
cessful and unsuccessful firms increases with competitive toughness. In par-
ticular, the Herfindahl concentration index21 is increasing in θ. It is through
this effect on market shares, hence by enhancing concentration (as measured
by the Herfindahl index) that tougher competition can stimulate R&D. Note
that the concentration effect exhibited here is not measured by the reduction in
the number of firms (at zero profit equilibrium under free entry) when competi-
tion becomes tougher, as it is the case in non-tournament models with all firms
identical (e.g. van de Klundert and Smulders, 1997). We have to use a more
sophisticated notion of concentration since, although we assume symmetry ex
ante, we lose it ex post when there are successful and unsuccessful firms.
Using the first order condition (10), the equilibrium profit Π per unit of

expenditure of firm j is then equal to

Π (δj , n,N, θ) = (1− θ)m (δj , n,N, θ)2 . (18)

We see that an increase in competitive toughness has two effects on a firm
equilibrium profit, first a negative markup squeezing effect through (1− θ), and
second an effect through the variation in market share m (δj , n,N, θ). When all
active firms have the same cost, so that they all get the same market share
at equilibrium, profits decrease as competition becomes tougher. This is also
true as regards the profit of an unsuccessful firm (δj = σ, with n ≥ 1) since
its market share is a decreasing function of competitive toughness. But, as
competition becomes tougher, the increasing market share of a successful firm
(δj = 1) has a positive effect which may more than compensate the negative
markup squeezing effect, provided its relative cost advantage κ is strong enough,
but not so as to make the innovation drastic (see (16)).
However, as we shall see in the following, it is not so much the equilibrium

profit that determines a firm incentive to innovate, but rather the incremental
gain G of innovating

G (n,N, θ) ≡ Π (1, n+ 1, N, θ)−Π (σ, n,N, θ) , (19)

for 0 ≤ n < N (using the equality Π (σ, 0, N, θ) = Π (0, 0, N, θ)). Here an
increase in competitive toughness has clearly two opposite effects. There is still

21The Herfindahl index is defined as

H = N
j=1m

2
j =

1

N
+NV ,

with mj the market share of firm j and the variance

V =
1

N
N
j=1 mj −

1

N

2

.
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the negative markup squeezing effect, together with a positive concentration
effect through the difference in the squares of market shares. We may thus
expect to obtain a non-monotonic relationship between the incremental gain
of innovating G and the competitive toughness θ. This is formalized in the
following lemma showing that G either has an inverted-U shape or is decreasing
for all θ.

Lemma 1 If the relative cost advantage κ (or the number n) of successful firms
is small enough, then the incremental gain of innnovating G is increasing in the
competitive toughness θ for sufficiently small, and decreasing for sufficiently
large, values of θ. Otherwise, G is decreasing in θ in the whole interval [0, 1].
In any case, the function G is strictly quasi-concave in θ in the whole interval
[0, 1]. Moreover G is decreasing in n for small enough values of κ.

Proof. See Appendix.
In the case of drastic innovations, that is, when θL (n) = 0 due to a com-

bination of many innovators and a large relative cost advantage, laggards are
eliminated even under Cournot competition, so that the concentration effect
vanishes and tougher competition can only have a negative effect on the in-
centive to innovate through the markup squeeze. In the case of non drastic
innovations, the concentration effect is positive but weak when innovation is
sufficiently appropriable (with a small spillover coefficient σ, resulting in a large
relative cost advantage κ) and when the number n of innovators is large. The
incentive to innovate is then stronger even if competition is soft, in conformity
with Schumpeter’s view. By contrast, with small values of κ and n, the incen-
tive to innovate is first increasing and eventually decreasing with competitive
toughness, so that we may obtain a non-monotone curve relating the incremen-
tal gain of innovating to competitive toughness. This non-monotonicity derives
from a strong concentration effect when competition is soft, that is, from the
incentive created by a high prospective increase of the innovator’s market share,
an effect that entirely depends upon the probabilistic nature of the model, and
disappears as soon as innovation is approached as a deterministic process. The
last statement of the lemma asserts that the incentive to innovate decreases
with the number of innovators, a property which will play a crucial role in the
following (see the proof of Proposition 1), and which relies on the possibility of
multiple winners, usually excluded in tournament models. Hence, uncertainty
and multiplicity of simultaneous innovations are crucial to get a non-monotone
relation between competitive toughness and R&D-investment.

2.3 Strategic R&D-investment

In the preceding analysis, we have supposed that each firm had already chosen
its level of investment in R&D and that uncertainty of innovation was resolved,
implying that the sets of successful and of unsuccessful firms were fixed. We
now introduce a first stage during which each firm j chooses a level of R&D-
investment leading to discovery with some probability of success sj . Innovation
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is assumed to be a Bernoullian random process which depends upon these invest-
ment levels. The two-stage game will depend on the expected expenditure A,
on the number of firms N and, of course, on the selected competitive toughness
θ, and will be denoted Γ (A,N, θ).
For simplicity, firm j investment is directly represented by the independent

probability sj of success in the next period. We specify the investment cost
to be quadratic: C (sj) = φ + (γ/2) s2j for sj ≥ 0 (with φ > 0 and γ > 0).
The sunk cost φ corresponds to the investment which is required for having
access to the technology and for benefitting from technological spillovers. The
probability that a subset S of firms innovate simultaneously, while firms in
the complementary subset S do not succeed, is given by

Q
j∈S sj

Q
j∈S (1− sj).

We denote Pr {ν | s−j} the probability of having ν innovators among the N − 1
competitors of firm j with investment strategies s−j ≡ (s1, ..., sj−1, sj+1, ..., sN ).
Investment sj is decided by maximizing the profit expectation Π̃ (sj , s−j)A,

for given values of A, N and θ, with

Π̃ (sj , s−j) = sj
N−1P
ν=0

Pr {ν | s−j}Π (1, ν + 1, N, θ)

+ (1− sj)
N−1P
ν=0

Pr {ν | s−j}Π (σ, ν,N, θ)− C (sj)

A
. (20)

This expectation is strictly concave in the strategy variable sj , by the specifica-
tion of the cost function. We thus obtain for each j the necessary and sufficient
first order condition for an interior maximum (at sj ∈ (0, 1))

C 0 (sj)

A
=

N−1P
ν=0

Pr {ν | s−j} [Π (1, ν + 1, N, θ)−Π (σ, ν,N, θ)]

=
N−1P
ν=0

Pr {ν | s−j}G (ν,N, θ) ,

the equality of the marginal R&D-investment cost and of the expected value of
the incremental gain of innovation (both by unit of expenditure).
At a symmetric equilibrium (with sj = s, for any j), this first order condition

becomes:
γs

A
=

N−1P
ν=0

Pr {ν | (s, ..., s)}G (ν,N, θ) ≡ G (s,N, θ) , (21)

where

Pr {ν | (s, ..., s)} = (N − 1)!
(N − 1− ν)!ν!

sν (1− s)N−1−ν . (22)

By continuity of G as a function of s, and since G (0, N, θ) = G (0, N, θ) > 0,
either there is a value s ∈ (0, 1) satisfying equation (21), or G (s,N, θ) > γ/A
for any s ∈ (0, 1) and the corner solution s = 1 applies.
Using Lemma 1 and the probabilities given by (22), we may easily derive

the following conclusions:
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Lemma 2 If the relative cost advantage κ of successful firms (or the probability
of success s) is small enough, then the expected incremental gain of innovating
G (s,N, θ) is increasing with the competitive toughness θ for sufficiently small,
and decreasing for sufficiently large, values of θ. Otherwise, G is decreasing in
θ in the whole interval [0, 1].

Proof. Given N , G (s,N, θ), as a function of θ, is an expectation (deter-
mined by s) computed from the set of functions G (ν,N, θ) for ν = 0, 1, ..., N−1.
By Lemma 1, whenever κ is small enough, every such G (ν,N, θ) is increasing
in θ for any θ close to 0. Also, for s small enough,we see by (22) that most
of the weight is put on small values of v entailing (again by Lemma 1) that
G (ν,N, θ) is increasing in θ for any θ close to 0. In both cases (small κ or small
s), G (s,N, θ) is increasing in θ for any θ close to 0. Since, for any ν, G (ν,N, θ)
is decreasing in θ for any θ close to 1 (and for all θ in [0, 1] when neither κ nor
s are too low), G (s,N, θ) inherits the same property.
Except for quasi-concavity, the properties exhibited in Lemma 1 for the

function G, are preserved in expected terms for the function G, with a condition
imposing a small probability of success replacing the condition of a small number
of successful firms. An implication is that, when the relative cost advantage of
innovation is significant, the possibility of deviating from a strict Schumpeterian
view arises from the probabilistic nature of the model.
The following figure illustrates Lemma 2 by showing how the expected in-

cremental gain varies with competitive toughness for three values of the proba-
bility of success s (s = 0.25, 0.5, 0.75).22 For the lowest value of s, we obtain a
hump-shaped curve dominating the other two. For the largest value the curve
is decreasing overall.
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Figure 1

The next proposition describes properties of the (symmetric) equilibrium
where all firms choose the (same) level of R&D-investment, a probability of
success s, for various values of competitve toughness.

22The figure is based on the parameter values N = 9 and κ = 0.07 8.
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Proposition 1 If the relative cost advantage κ of successful firms is small
enough, the symmetric equilibrium level s of R&D-investment is uniquely de-
termined for every value of θ. If, in addition, the slope γ/A of the marginal
investment cost per unit of aggregate expenditure is large enough (so as to ex-
clude a corner solution), then s is increasing with competitive toughness θ for
sufficiently small, and decreasing for sufficiently large, values of θ. Moreover, s
is decreasing in γ/A.

Proof. By Lemma 1, the incremental gain G is decreasing in n for small
enough values of κ. An implication of this property of G is that the expected
incremental gainG is decreasing in s. Indeed, by (22), the elasticity of the weight
Pr {ν | (s, ..., s)} with respect to s is equal to (ν − (N − 1) s) / (1− s), which has
the sign of the excess of ν over its mean. Thus, an increase in s displaces the
mass towards the terms corresponding to a larger number of successful firms,
those for which the incremental gain is lower. It results that the first order
condition for equilibrium investment (21) uniquely determines the symmetric
equilibrium value of s at the intersection of the decreasing curve on the right
hand side with the increasing line on the left hand side, provided this line has
a large enough slope γ/A (otherwise, we obtain the corner solution s = 1).
Then, from Lemma 2, for a sufficiently low competitive toughness, the expected
incremental gain is increasing, implying by (21) an increasing equilibrium level s
of R&D-investment. The reverse holds for sufficiently soft competition. Finally,
notice that the equilibrium value s (a solution to (21)) is smaller for a higher
slope γ/A.
The proof of Proposition 1 is illustrated in Figure 2, where the increasing

line corresponds to the LHS of (21), and the decreasing curves to its RHS, for
values of the competitive toughness θ = 0 and θ = 0.12 (the upper thick and
thin curves, respectively), and θ = 0.8 and θ = 0.9 (the lower thick and thin
curves, respectively).23
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Figure 2

23The figure is based on the parameter values N = 3, κ = 0.1 and γ/A = 1.5.
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In the situation depicted in Figure 2, the equilibrium level s of R&D-investment
increases (resp. decreases) as one switches from the thick to the thin curve, that
is, as competition becomes tougher, starting from soft (resp. tough) competi-
tion. The reverse result would be attained, in the case of soft competition, for
lower values of the slope γ/A of the increasing line (since the two decreasing
curves intersect).
Notice that Proposition 1 uses the main properties of the incremental gain

function that were exhibited in Lemma 1, in particular the fact that it decreases
with the number of innovators, which has the consequence that the expected
incremental gain is decreasing in s. This means that assuming the number of
innovators to be a random variable, following a Bernoullian process, is essential
to establish the proposition.

3 Competition and innovation in endogenous
growth: a non-monotone relationship

The previous proposition shows the possibility of obtaining a non-monotone re-
lationship between R&D-investment and competitive toughness (increasing at
low values and decreasing at high values), by using a single sector partial equi-
librium model. As mentioned in the introduction, an inverted-U relationship
has been theoretically derived by Aghion et al. (2005) in a multi-sectoral en-
dogenous growth model, through a “composition effect of competition on the
steady-state distribution of technology gaps across sectors”. When competition
increases from its minimal to its maximal level, the aggregate innovation rate
first increases (the “escape competition effect” dominates because of a larger
percentage of neck-and-neck industries) and then decreases (the “Schumpeterian
effect” dominates because of a larger percentage of industries exhibiting a tech-
nology gap).
We shall show that the one-sector model constructed above and the associ-

ated two-stage game can serve as a building block in an endogenous growth gen-
eral equilibrium model with a continuum of uniformly distributed oligopolistic
industries and that the non-monotone pattern can also be predicted for cross-
section investigations. In our model, though, we do not assume that every
industry has a fixed number of firms (two in Aghion et al., 2005). It is com-
posed of a finite but endogenously determined number of firms, each having
a two-period life, competing first at the research and then at the production
levels. The number of successful firms is a random variable, the realisation of
which may differ across industries.

3.1 A model with overlapping generations of firms and
consumers

We use an overlapping generations model with a continuum of produced goods
and an infinite number of periods (t = 0, 1, ...). Both firms and consumers live
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for two periods, corresponding to R&D-investment and production stages for
firms, and young and old ages for consumers.
On the firms side, there is a continuum of identical oligopolistic industries

of mass 1. At date t+ 1, there is in each industry i a number Nit (Nit ≥ 2) of
firms created at date t, which produce good i for immediate consumption, on a
one-to-one basis with respect to effective labor, supplied by young consumers:

yijt+1 = lijt+1Hitη
δijt ,

where yijt+1 and lijt+1 are the output and labor input of firm j, respectively,
Hit is the inherited stock of knowledge (available to the whole industry at the
beginning of period t), and η > 1 is the innovation step if the firm has succeeded
to innovate (with probability sijt and cost C (sijt)) at the end of period t. As
indicated in the preceding section, δijt is equal to 1 for an innovator, to σ ∈ [0, 1)
for an unsuccessful firm benefitting from spillovers from successful competitors,
and to 0 if there were no innovators in period t. Accordingly, and taking labor
as the numeraire, the unit production cost is cit (δijt) = 1/Hitη

δijt , so that the
innovators’ relative cost advantage is a constant κ = 1− ησ−1. We also assume
that public knowledge accumulates in proportion to the percentage of successful
firms:

Hit+1 −Hit

Hit
= (η − 1) nit

Nit
. (23)

On the consumers side, there is a continuum of identical consumers of con-
stant unit mass at each generation. One unit of labor is inelastically supplied
at wage 1 by each young consumer, who has to choose present consumption
xt ∈ R[0,1]+ and saving zt ∈ R+, under the budget constraint24 hPt, xti+ zt = 1,

where Pt ∈ R[0,1]+ is the vector of market prices. Anticipated future consumptionext+1 is a random variable induced by ert+1 and ePt+1 according to the budget
constraint

D ePt+1, ext+1E = ert+1zt, where ePt+1 is the vector of anticipated market
prices and ert+1 is the expected return factor on capital. Saving is supposed to
be invested in funds that allow to cancel out idiosyncratic risks, but not aggre-
gate risk, so that ert+1 is a random variable depending upon the success of the
innovative efforts by all investing firms. For simplicity, we assume symmetric
log-linear sub-utility functions:

U(xt, ext+1) = α

Z 1

0

lnxitdi+ (1− α)

Z 1

0

ln exit+1di, with α ∈ ]0, 1[ .

so that xit = (1− zt) /Pit and exit+1 = ert+1zt/ ePit+1. Maximizing expected
utility reduces to maximizing α ln (1− zt)+(1− α) ln zt, leading to the solution
zt = 1− α.
Given rt (the actual return factor) and Pt, old consumers at period t op-

timally choose consumptions x0it = rtzt−1/Pit = (1− α) rt/Pit. Thus, adding

24Given P and x belonging to R[0,1], we let hP, xi denote the inner product 1
0 Pixidi.
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consumptions by youngs and olds, we obtain the aggregate demand At/Pit for
good i, with aggregate expenditure

At = α+ (1− α)rt. (24)

Observe that, as we have assumed a continuum of sectors, At is unaffected by
sectoral idiosyncratic variations.

3.2 The intertemporal stochastic equilibrium

The Nit firms in industry i, created at date t, can be seen as involved in a
two-stage game Γ(At+1, Nit, θit+1) of the kind analysed in section 2. In the
first stage of this game, corresponding to the investment period t, each firm j,
producing good i, chooses strategically a probability sijt of success and accord-
ingly invests C (sijt) in R&D. Uncertainty on innovation is resolved at the end
of period t, resulting for each industry i in a number nit of successful firms.
In the second stage, corresponding to the production period t + 1, each firm j
chooses a price-output pair (pijt+1, yijt+1). Our concept of equilibrium for the
whole economy is based on the sequence

¡
sit,

¡
p∗it+1, y

∗
it+1

¢¢
it
of solutions to the

sequence (Γ(At+1, Nit, θit+1))it of these two-stage games, for all industries. We
assume such solutions to be symmetric within each sector relative to investing
firms (sit = (sit, ..., sit)) and within each category of producing firms (successful
and unsuccessful).
This sequence of solutions is determined by the sequence of vectors (θit+1)it

of competitive toughness which can be treated as exogenously given (except in
the limit pricing regime, where θit+1 = θL (nit)). In order for this sequence
of solutions to deliver an intertemporal stochastic equilibrium, the sequence of
values of the variables (nit,Nit, At+1)must satisfy three sequences of conditions.
The first sequence of conditions corresponds to the first order conditions for
equilibrium investment (see (21)):

γ

At+1
sit = G (sit, Nit, θit+1) . (25)

The second sequence of conditions corresponds to capital market clearingZ 1

0

NitC (sit) di = 1− α, (26)

expressing the equality of aggregate R&D-investment and aggregate saving. Fi-
nally, the third sequence of conditions corresponds to labor market clearing.
Total labor supply is 1 but, by the capital market clearing conditions, a propor-
tion 1−α of labor is employed by investing firms, leaving α to producing firms,
so that we get

At+1

Z 1

0

L (nit, Nit, θit+1) di = α (27)

where L (nit, Nit, θit+1) is labor demand per unit of expenditure in industry i.
As the wage is normalized to 1, labor demand must be equal at equilibrium to
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expenditure minus the total profits of successful and unsuccessful firms, so that,
by (18), we obtain the following expression:25

L (nit, Nit, θit+1) = 1− nit (1− θit+1)m (1, nit, Nit, θit+1)
2

− (Nit − nit) (1− θit+1)m (σ, nit, Nit, θit+1)
2 . (28)

In order to compare the implications of our model with the cross-sectional
observations of Aghion et al. (2005), we refer to the first order conditions
for equilibrium investment (25) in two industries of the same size, where the
coefficient (γ/At+1) on the left hand side of (25) and the relative cost advantage
κ are the same. As a direct corollary of Proposition 1, we may derive the
following cross-section result.

Proposition 2 Consider an intertemporal stochastic equilibrium and any pe-
riod t. Suppose that two industries i and i0 have the same size (Ni0t = Nit), the
same sufficiently low relative cost advantage κ and the same sufficiently steep
marginal investment cost per unit of expenditure (high γ/At+1). Also assume
that both industries have a sufficiently low (resp. high) competitive toughness,
but that i0 is more competitive than i: θi0 > θi. Then the R&D-investment of
the more competitive sector is larger (resp. smaller): si0 > si (resp. si0 < si).

In other words, a statistical cross-section of otherwise identical industries
(with low relative cost advantage and steep marginal investment cost) should
reveal that if competition is soft (resp. tough) for two of them, the more com-
petitive one invests more (resp. less).

3.3 The implications of an endogenous number of firms

Aghion et al. (2005) limit their analysis to an economy where every product
market is a duopoly. By contrast, van de Klundert and Smulders (1997) in-
troduce a non-tournament model, where the number of firms is endogenously
determined under free entry by the zero profit condition. This model allows
them to show that the (differentiated) Bertrand equilibrium always implies a
higher rate of innovation than the Cournot equilibrium. This is so because
tougher competition, meaning lower markups and prices, enlarges the market
for high-tech goods and weakens the relative weight of R&D costs, increasing
the attractiveness of R&D-investment. But, at the same time, tougher compe-
tition also reduces the equilibrium number of firms, implying larger firm size
and more means devoted to R&D activity. Although our model is a tournament
model, we shall see that a comparison with the approach of van de Klundert
and Smulders (1997) is straightforward.
In order to achieve this comparison, we assume identical regimes of compe-

tition across time and sectors (θit = θ for any i and t), the symmetry of the

25Observe that labor demand can be expressed as

L (nit, Nit, θit+1) = 1− (1− θit+1)H (nit,Nit, θit+1) ,

where H (nit,Nit, θit+1) is the Herfindahl concentration index for industry i at date t+ 1.
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model leading to stochastic equilibria that are symmetric and quasi-stationary,
i.e. with random variables (ñit)it following the same binomial law of constant
parameters (N, s).26 The capital market clearing condition then simplifies to

NC (s) = N
³
φ+

γ

2
s2
´
= 1− α. (29)

Also, the labor market clearing condition can be re-written (using the weak law
of large numbers) as

A
NP
ν=0

N !

(N − ν)!ν!
sν (1− s)

N−ν
L (ν,N, θ) ≡ AL (s,N, θ) = α. (30)

Combining this condition with the first order condition (25) for equilibrium
investment, we obtain the equilibrium investment condition

γ

α
L (s,N, θ) s = G (s,N, θ) . (31)

The equilibrium level of the probability s and the equilibrium (average) number
N of firms can be determined by solving equations (29) and (31),27 for given
competitive toughness θ (or by taking θL (ν) as the third argument of L (ν,N, θ)
in (30) if we consider the limit pricing regime). Once s and N are determined,
all other variables can be readily computed, in particular the expected growth
rate (η − 1) s.
In order to further facilitate the comparison between the two approaches,

we take an example, solving our model numerically for specific values of the
parameters: η = 1.1, and σ = 0.15 for the innovation step and the spillover
coefficient, respectively (leading to the relative cost advantage κ = 1− ησ−1 =
0.078), α = 0.75 for the propensity to consume, γ = 0.03 for the variable
investment cost and the two values φ1 = 0.025 and φ2 = 0.055 for the fixed
cost. Figure 3 gives a geometrical representation of this example.

26The number of investing firms in each industry depends upon the way savings are allocated
to firms in the capital market. Here we suppose that this allocation results in a common
number N of firms. However, to be precise, the value of N resulting from the equlibrium
conditions is not necessarily an integer, so that it should be seen as a weighted average of the
(integer) numbers of firms in the different industries, for instance of the two integers that are
closest to N .
27The ZP (zero profit) curve in van de Klundert and Smulders (1997) plays in fact a role

analogous to the curve expressing the capital market clearing condition (29) in our model.
Also, their CME (capital market equilibrium) curve — resulting in particular from conditions
for profit maximizing relative to (non-strategic) investment decisions — plays in their model a
role equivalent to the curve expressing the equilibrium investment condition (31) in our model.
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The equilibrium levels of s and N are given by the intersection of one of
the two steep capital market clearing curves (the one to the right for the low
value φ1 and the one to the left for the high value φ2) with one of the four
flatter equilibrium investment curves (for different values of competitive tough-
ness θ). The four equilibrium investment curves correspond to θ = 0 (Cournot
regime, upper thick curve), θ = .5 (lower thin curve), θ = .9 (close to Bertrand
regime, lower thick curve), and limit pricing (upper thin curve). The relation-
ship between R&D effort, as represented by the probability of success s, and
competitive toughness is monotone decreasing in the case of high fixed cost φ2
(left steep curve). The equilibrium value of s decreases indeed with compet-
itive toughness from s ' 0.75 (for θ = 0) through s ' 0.69 (for θ = 0.5) to
s ' 0.52 (for θ = 0.9) — limit pricing giving an intermediate value s ' 0.73 —
with an increasing average number of investing firms close to 4. The sense of
this relationship, resulting from a concentration effect too small to dominate
the markup squeezing effect, conforms with the Schumpeterian prediction. It
contradicts van de Klundert and Smulders’conclusions.28

Besides, according to Proposition 1, the relationship between R&D effort
and competitive toughness is non-monotone in our model for parameter values
entailing lower equilibrium probabilities of success. Indeed, in the case of a low
fixed cost φ1 (right steep curve), leading to smaller equilibrium probabilities s
(and to higher numbers of investing firms, fluctuating between 8 and 10), s first
increases with competitive toughness from s ' 0.42 (for θ = 0) to s ' 0.44 (for
θ = 0.5) and then falls back to s ' 0.32 (for θ = 0.9) — limit pricing entailing
the highest value s ' 0.49. This non-monotonicity is possible because the

28 In their model, they have two sectors, one producing high-tech differentiated goods, where
innovation takes place, and another perfectly competitve sector. The positive concentration
effect of tougher competition is reinforced by an increase in the high-tech market size (since
the relative price of high-tech goods goes down). This feature is absent in our model.
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equilibrium investment curves for θ = 0 and θ = 0.5 intersect in this example. As
already emphasized, it is in accordance with the inverted-U pattern empirically
found by Aghion et al. (2005).
A final observation is in order. When the concentration effect of an increase

in competitive toughness θ dominates the markup squeezing effect, so that the
equilibrium investment curve is locally shifting upwards, the average number N
of investing firms must decrease, because the capital market clearing curve is
decreasing. This means that the concentration effect prevalent at the sectoral
partial equilibrium level is in this case reinforced at the general equilibrium
level.

4 Conclusion
Incentives to innovate depend upon multiple and conflicting effects, and it is
only natural that there is no clear-cut answer to the question of determining
if tough competition tends to spur or deter potential R&D investors. By com-
bining features of tournament and non-tournament models, more specifically by
admitting the possibility for investing firms either to innovate along with some
of their rivals, or to fail in their R&D effort and yet to remain productive, we
have obtained a relationship between innovation and product market competi-
tion which may well be non-monotone for an individual industry. This result
does not rely on a composition effect, as it is the case for the inverted-U pattern
of Aghion et al. (2005). Non-monotonicity follows straightforwardly from the
interplay of two conflicting effects: the negative Schumpeterian effect of tougher
competition through markup squeeze and the positive concentration effect ex-
panding innovators’ market shares. For the latter to dominate the former, one
must assume non drastic innovations (a small relative cost advantage of the
innovators), so that unsuccessful firms keep a positive market share, and condi-
tions for a low equilibrium probability of R&D success, so that the incremental
gain of those which do succeed is high enough to encourage R&D effort (and
the more so the tougher the competition). It should be noticed that the con-
centration effect at work in our model is not primarily related to the reduction
of the number of firms (as in van de Klundert and Smulders, 1997, and other
symmetric non-tournament models) but rather to the increase in innovators’
market shares. But higher competitive toughness is favorable to innovation
only when competition is initially soft, otherwise one obtains the traditional
Schumpeterian deterring effect of competition on innovative activity.

A Appendix: Proof of Lemma 1
We start by studying the function G (n,N, θ), the expression of which dif-

fers in three intervals:
h
0, θL (n+ 1)

i
,
h
θL (n+ 1) , θL (n)

i
and

h
θL (n) , 1

i
, with

θL (n) = max {1− nκ, 0}. Using (16), (17), (18) and (19), we obtain for θ ∈
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h
0, θL (n+ 1)

i
:

G (n,N, θ) = (1− θ) [m (1, n+ 1, N, θ)−m (σ, n,N, θ)]

× [m (1, n+ 1, N, θ) +m (σ, n,N, θ)]

= a (n,N)

µ
N

1− θ
− 1
¶
[2− b (n,N) (N − (1− θ))] , (32)

with a (n,N) ≡ κ

N − (n+ 1)κ

µ
1− 1

N − nκ

¶
> 0,

and b (n,N) ≡ 1− κ

N − (n+ 1)κ +
1

N − nκ
> 0.

We can then get, for the sign of the elasticity of G with respect to θ,

sign { θG (n,N, θ)} = sign
½
(1− θ)2 −N2

µ
1− 2

Nb (n,N)

¶¾
. (33)

For θ ∈
h
θL (n+ 1) , θL (n)

i
, we have:

G (n,N, θ) = (1− θ)

Ãµ
1

n+ 1

¶2
−
µ
1− nκ/ (1− θ)

N − nκ

¶2!
, (34)

with sign of its elasticity with respect to θ

sign { θG (n,N, θ)} = sign
(
1−

µ
N − nκ

n+ 1

¶2
−
µ

nκ

1− θ

¶2)
. (35)

Finally, for θ ∈
h
θL (n) , 1

i
,

G (n,N, θ) =
1− θ

(n+ 1)
2 . (36)

Looking at equations (33) and (35), we see that the elasticity of G can change
signs at most once, from positive to negative, in each one of the two first inter-
vals. Also, since by (16) and (17) the partial derivative of m (1, n+ 1, N, θ) with
respect to θ switches from positive to nil at θ = θL (n+ 1), and the correspond-
ing partial derivative of m (σ, n,N, θ) is continuous at the same point, we see
from (18) and (19) that the right-hand partial derivative ofG with respect to θ at
θL (n+ 1) must be smaller than the corresponding left-hand derivative. Hence,

G is strictly quasi-concave in θ when restricted to the interval
h
0, θL (n)

i
. As G

is clearly decreasing in θ in the interval
h
θL (n) , 1

i
, we can conclude that G is in

fact strictly quasi-concave in θ. We may add that G is never monotonically in-

creasing, since the interval
h
θL (n) , 1

i
is non-degenerate for n > 0 and, by (35),

G is otherwise decreasing in the interval
h
θL (n+ 1) , θL (n)

i
=
h
θL (1) , 1

i
.
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Now let us consider the case where either the number n of successful firms
or their relative cost advantage κ is small, so that θL (n+ 1) > 0. By (32) and
(33), the function G is increasing for θ close to zero if and only if

Nb (n,N)− 2 =
µ

n

N − nκ
− N − (n+ 1)

N − (n+ 1)κ

¶
κ <

2

N2 − 1 . (37)

A simple inspection shows that this inequality holds either for κ close to zero,
or for n = 0, and is violated if both κ and n are large enough.
It remains to show that the incremental gain G is a decreasing function of

n when κ is small enough. Using again (16), (17), (18) and (19), we obtain for

θ ∈
h
0, θL (n+ 1)

i
:

G (n,N, θ) =

"µ
1

N − 1 + θ
− 1− κ

N − κ− nκ

¶2
−
µ

1

N − 1 + θ
− 1

N − nκ

¶2#

×(N − 1 + θ)2

1− θ
. (38)

We see that the terms (1− κ) / (N − κ− nκ) and 1/ (N − nκ) have both pos-
itive elasticities, the elasticity of the former term being the larger one. As
a consequence, the first square within the brackets decreases faster than the
second as n increases, so that G is indeed decreasing in n. Also, for θ ∈h
θL (n) , 1

i
, G (n,N, θ) = (1− θ) / (n+ 1)2, and is clearly decreasing in n. For

θ ∈
h
θL (n+ 1) , θL (n)

i
, the two squares in (34) are both decreasing in n, but

the elasticity of the second one is smaller in absolute value, leading to the same
conclusion, for κ small enough.
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