
Aggregation and multilevel design for systems:
finding guidelines

Donald G. Saari
Professor: Mathematics, Economics

Director: Institute for Mathematical Behavioral Sciences
University of California
Irvine, CA 92697-5100
Email: dsaari@uci.edu

All areas of engineering have a need to find appropriate ag-
gregated outcomes for systems. Issues range from decision
problems, “divide-and-conquer” approaches that include
aspects of multidisciplinary design optimization (MDO) and
the effects of a division of labor for, perhaps, a design
project, the inefficiencies that can accompany multidisci-
plinary projects involving, say, design, manufacturing, and
sales, to the complexities of multiscale design, analysis, and
even nanotechnology. But as shown, if the adopted approach
(e.g., management choices, divide-and-conquer methodol-
ogy, modeling of the biology/physics, decision rule, etc.) sat-
isfies particular accepted practices, then certain complex-
ities and inefficiencies must be anticipated. A disturbing
corollary is that even should “success” appear to have been
achieved with an approach that satisfies these conditions, it
need not be as firm as expected. Ways to improve methodolo-
gies must avoid the specified conditions.

1 Introduction
Multiscale design and analysis are interdisciplinary de-

velopments with a promise to address inherent system com-
plexities that occur in engineering and elsewhere. Accompa-
nying the objective of relating behavior from different scales,
and even from different disciplines (e.g., MDO), is the expec-
tation that a combined micro-macro analysis may be more
tractable and useful than what can be achieved by just ex-
amining micro level behavior in detail (Weinan et. al. [1]).
As true in nanotechnology, for instance, information about
the macro structure may help to identify which variables and
aspects of micro and nano effects to emphasize.

While multiscale and multidisciplinary methodologies
promise advantages, particularly when coupled with compu-
tational methods, its exploratory nature is reflected with cau-
tionary word choices such as expressing a “hope” of finding
connections (e.g. [1]). This caution reflects both the inherent
complexity of these problems and a recognition that many of
the approaches are approximation techniques1 developed to

1A point that was strongly reinforced by a referee’s comments.

manage the complexity.

If approaches cannot provide optimal answers for an-
alyzed and/or designed settings, then methodological im-
provements are needed. To find improvements, a crucial
first step is to understand what can go wrong. That is,
a goal should be to discover what hinders our attempts to
find reasonable (leave alone optimal) outcomes and to ob-
tain information about which aspects of an approach should
be changed. This defines the objective of this article; it
is to identify a common source of difficulties that afflicts
various multiscale and multidisciplinary approaches for de-
sign and/or analysis. As these results address complexities
that arise with a variety multiscale and multidisciplinary ap-
proaches, this broader topic is called “multilevel methodol-
ogy.”

A way to analyze multilevel methodologies is to treat
them as generalizations of aggregation processes. Doing so
suggests where to find insights from other literatures. In
return, this transferability of conclusions allows the conclu-
sions developed here to be applied to issues as varied as the
economic “supply and demand” story, questions from astron-
omy, organizational design, and “parts-whole” ecological ef-
fects.

For a flavor of what will be described, consider a com-
mon approach used to examine a complex system which is to
first decompose the problem into parts and then analyze each
component. Accompanying this divide-and-conquer proce-
dure is a “path dependency” difficulty. This is where even if
reasonable outcomes are found for each part, the final out-
come could more accurately reflect the order in which the
parts are analyzed and/or assembled rather than the actual
structure. To illustrate this phenomenon with a decision rule
where the goal is to find a reasonable choice (macro out-
come) from among seven alternatives, suppose the rankings
of these alternatives over fifteen criteria (the micro behavior)



are

5 A� B�C � D� E � F � G,
5 B�C � D� E � F � G� A,
5 C � D� E � F � G� A� B

(1)

Each criterion ranks C � D� E � F over G, so G clearly is
the inferior choice.

The comprehensive Eq. 1 information typically is not
available, so a common decision technique is to compare
the alternatives in pairs where, at each step, the poorer one
is dismissed. But with the Eq. 1 data, rather than this
paired comparison method ensuring a reasonable choice,
each alternative—even G—could be identified as a reason-
able or even the “best” outcome just by using different or-
ders of comparisons. To illustrate with a path that selects G,
compare the {E,F} winner (which is E) with D; compare
that winner (D) with C; that winner (C) with B; that winner
(B) with A; and that winner (A) with G to reach the final out-
come of G. As each paired outcome is determined with a
two-thirds or unanimous support, it might appear that strong
evidence supports and validates this (faulty) conclusion of
G. A message derived from this example is that while an
approach may deliver reasonable answers in some settings,
when the same technique is used in other settings, the path
dependency phenomenon can provide seemingly “strong ev-
idence” to support an inferior, inefficient, or even incorrect
conclusion.

The “path dependency” phenomenon is so common that
it must be anticipated. Already in a calculus course that
introduces the notion of path integrals, students learn that
the work required to go from one point to another can de-
pend upon the path taken. As shown here, this “path depen-
dency” phenomena extends to all aggregation areas: Expect
it to affect multilevel methodologies. In particular, anticipate
path dependency to adversely affect the outcomes for loca-
tion problems, assessments, engineering and manufacturing
decisions, issues of organizational design, nanotechnology,
multidisciplinary design optimization, and even the common
“division of labor” practice of assigning tasks to different
groups to achieve a desired outcome.

Because my goal is to understand what causes difficul-
ties with multilevel methodologies, my main conclusions
(Sect. 3) are necessarily negative: they assert that when-
ever a procedure (e.g., an approximation technique, decision
rule, or any other multilevel approach) satisfies certain nat-
ural and convenient properties, the methodology need not,
in general, produce appropriate, or even reasonable conclu-
sions about the system; i.e., the developed answers about the
system may be misleading and even incorrect. An associ-
ated issue (which is an ongoing project) is to find ways to
circumvent these negative consequences. Resolutions will
be issue-specific, but intuition about what needs to be done
(Sect. 5) comes from Rubik’s Cube.

2 Arrow’s result
My results are motivated by Arrow’s [2] profound but

negative theorem, which asserts that it is impossible to create
a decision rule that always does what seems to be obviously
possible to do. Arrow’s result is based on the ordinal rank-
ings of a finite number of alternatives. Similar to Arrow’s
assertion, my results prove that much of what we try to do
cannot be done. In contrast with Arrow’s theorem, my con-
clusions address a much broader set of issues than allowed
by his setting of ordinal rankings of a finite number of al-
ternatives. By being related to Arrow’s seminal result, my
assertions contribute to the growing literature that explores
the implications of Arrow’s theorem for engineering.

This literature appears to have started when Hazzelrigg
[3] called attention to the close connection between social
choice and engineering decisions. Subsequent papers, such
as Franssen [4], van de Poel [5], and Wassenaar and Chen [6]
expand on this connection while others, such as Scott and
Antonsson [7], caution that Arrow’s theorem is not fully ap-
plicable because the “foundation of many engineering deci-
sion methods is the explicit comparison of degrees of prefer-
ence, a comparison that is not available in the social choice
problem.” While they are correct, the more general results
developed here fill this gap because these conclusions go far
beyond the ordinal rankings required by Arrow to include
comparisons that do involve a continuum of choices, degrees
of preference, and even interactive and dynamical properties.
To indicate what must be done to find positive assertions, a
new interpretation of Arrow’s result is developed at the end
of this section and discussed in Sect. 5. An advantage of this
new explanation is that it indicates why approaches that are
used to understand complexities from engineering or physics
can encounter serious problems.

The connections between multilevel methodologies and
Arrow’s Theorem make it appropriate to start with Arrow’s
result [2]. (For a significantly different, benign interpretation
of Arrow’s seminal theorem, which leads to positive con-
clusions, see Saari [8, 9].) Arrow imposes a compatibility
constraint on the voters’ admissible inputs: individual rank-
ings must be “orderly” in that they are complete (each voter
ranks each pair of alternatives) and transitive; i.e., if a voter
prefers A � B (i.e., A is preferred to B) and B �C, the voter
must prefer A �C. To interpret Arrow’s result in a decision
context, replace “voters” with “criteria.”

Assumption 1. (Compatibility) Each voter ranks the n ≥
3 alternatives in a complete, transitive manner. There are no
restrictions on a voter’s choice of a ranking.

The next assumptions describe seemingly reasonable
conditions that any useful decision rule might be expected
to satisfy. The first, Pareto, requires the rule to respect una-
nimity.2 To motivate the second, Independence of Irrelevant
Alternatives (IIA), suppose a panel evaluating research pro-
posals finds that Alice � Barb. IIA requires this Alice �

2The Pareto condition can be replaced with the much weaker condition
where at least each of two pairs of alternatives have at least two different
societal outcomes (Saari [8]).



Barb conclusion to hold independent of how the panel views
Connie’s proposal.

Assumption 2. (Pareto) If all voters rank a pair of alter-
natives in the same way, then this common ranking is the
pair’s societal ranking.

Assumption 3. (Independence of Irrelevant Alternatives,
IIA) The societal ranking for any pair of alternatives, say
{A,B}, is based strictly on how the voters rank this pair.
Namely, for any two profiles (a profile specifies how each
voter, or criterion, ranks the alternatives) p1 and p2 in which
each voter has the same {A,B} ranking, both profiles have
the same {A,B} societal ranking.

The final assumption imposes structure on the societal
outcome; it merely requires the societal ranking of the alter-
natives to be transitive.

Assumption 4. Societal outcomes are complete, transitive
rankings.

It is reasonable to expect that most group decision rules
satisfy these innocuous appearing conditions, but Arrow’s
Theorem asserts that only one rule does.

Theorem 1. (Arrow) With n ≥ 3 alternatives and at least
two voters, the only rule that always satisfies Assumptions
1-4 is a dictator. Namely, the rule is identified with a spe-
cific individual in that, for all possible profiles, the societal
outcome always coincides with that voter’s ranking.

As criteria replace voters in decision problems, the con-
clusion is that if a decision rule always satisfies these con-
ditions, then its outcomes are strictly based on information
coming from a single criterion; i.e., the decision rule always
ranks the alternatives as ranked by the specified criterion.

The impact of Arrow’s result derives from the reality
that we do not use dictatorial voting rules; we do not use
decision rules that depend solely on a single criterion. As
such, Thm. 1 guarantees that whatever rule is adopted, even
should there be circumstances where the rule satisfies all of
the specified requirements, other situations must exist where
at least one of the conditions is violated. To find which pro-
vision can breached, first determine which requirements the
rule must always satisfy; settings exist where a remaining
condition cannot be always observed.

In engineering comparisons, for instance, it is not un-
common to use versions of majority (or stronger) votes over
pairs. This non-dictatorial rule clearly satisfies Pareto and
IIA. The only remaining condition is the transitivity of out-
comes, so, according to Thm. 1, there must exist data sets of
transitive rankings where the outcome is not transitive. An
example, which is central to Hazzelrigg’s arguments [3], is
exhibited by the Condorcet triplet:

Preferences {A,B} {B,C} {A,C}
A� B�C A� B B�C A�C
B�C � A B� A B�C C � A
C � A� B A� B C � B C � A
Outcome A� B B�C C � A

(2)

The cyclic ranking of the bottom row, where each vic-
tory is supported by the same 2:1 count, frustrates the deci-
sion process; e.g., although A beats B, and B beats C, A need
not be a reasonable choice because C beats A. This cyclic
effect is what creates the inefficiencies of the “path depen-
dency” problem (which is one of several consequences of
Arrow’s result). A realistic concern is that when this diffi-
culty arises in practice, it probably would not be recognized.

The following new interpretation of Arrow’s theorem is
one that more closely addresses concerns related to the anal-
ysis of complexity issues from engineering. The goal is to
find the appropriate ranking (macro level) of the alternatives
for a given profile; Arrow’s theorem asserts that there are set-
tings where this objective must fail with a rule that satisfies
IIA and Pareto! Notice; IIA and Pareto require the decision
rule to construct a system’s outcome in terms of paired com-
parisons. Arrow’s result, then, guarantees that these divide-
and-conquer approaches must experience serious difficulties,
which include the path dependency problem. Thus

Arrow’s Theorem asserts that when a rule uses the
inputs from two or more agents (or criteria), and
it is based on IIA and the Pareto conditions, then
there always exist situations where the true structure
of the whole need not resemble the answers devel-
oped by using information from the assembly of the
parts.

In other words, if such a divide-and-conquer approach is
used to analyze the complexity of a system, it is guaranteed
to encounter difficulties. One must wonder whether related
assertions apply to “divide-and-conquer” approaches of the
kind that are commonly used in multilevel methodologies.
They do; identifying one such extension is the purpose of
this paper.

3 A generalized inconsistency theorem
Problems without solutions are seldom published, so the

literature provides limited information about which method-
ologies are associated with the difficulties of multilevel sys-
tem approaches (whether for engineering, physics, biology,
design, mathematics, or organizational structures). An al-
ternative, effective way to discover where these difficulties
occur is to question experts about what they do. A standard
response involves various “divide-and-conquer” approaches
where the system is decomposed into component parts. Sim-
ilar to what is done with Eq. 1, the next step is to determine
connections and appropriate outcomes among scales or lev-
els for each component of the system. This may be accom-
plished, for instance, by using particular laws of physics, bi-
ology, or the expertise of experts. The final step, which is
to assemble the answers developed for the component parts
into a compatible outcome for the system, often requires ad-
justments, guesswork, and “muddling.” Part of my analysis
is to explain why this last step can be difficult and frustrate
achieving success.

My main result alerts users about subtle limitations
that accompany this general methodology; it identifies what



causes basic problems. An importance of this conclusion is
that unless we know the source of problems, we run the dan-
ger of continually repeating them. Knowing what causes the
limitations, on the other hand, may suggest how to modify
these natural divide-and-conquer approaches to create a re-
lated methodology that is at least a step or two more efficient.

The spirit of my conclusions is revealed by the inclu-
sion of Sects. 1 and 2. For instance, while a divide-and-
conquer methodology might enjoy success, it will be shown
that other settings exist where either it is impossible to piece
together information about the parts to obtain conclusions,
or inappropriate, inefficient outcomes arise. What exacer-
bates the problem is that it can appear that the faulty con-
clusions are supported by strong evidence; i.e., expect the
Eq. 1 path dependency problem to accompany these tech-
niques. Moreover, should such a methodology permit suc-
cessful conclusions in a setting, in other settings where the
assured inappropriate outcomes arise, a natural attempt to re-
solve difficulties might be to emphasize the particulars of the
specific project rather than to address the true source of the
problem—methodological limitations.

Not all divide-and-conquer approaches experience these
problems, but many do. To identify when a methodology
should be questioned, I model a class of approaches where
the way in which a system is divided into its component
parts, and answers are sought, ensures the existence of diffi-
culties. While my result captures all settings from different
disciplines that were described to me (e.g., where it proved
difficult to achieve reasonable outcomes), it is not complete;
my result does not identify all approaches that can be af-
flicted by these complications. So, if a multilevel method-
ology even resembles this modeling, caution should be exer-
cised about interpreting and trusting conclusions.

My modeling reflects a multilevel feature (to reflect con-
cerns raised by colleagues in nanotechnology) that adequate
information about what happens at certain levels may not be
known; e.g., in multiscale design, rules of interaction at the
nano scale need not be fully understood. Indeed, an explicit
objective of the analysis may be to obtain insight into what
happens at a micro or nano level in terms of what is known
about the macro level. To capture this intent, the structure
of a system at a macro level is modeled in a way to include
where macro information can be used to identify potential
structures at micro and other levels. This modeling also in-
cludes, of course, settings where the micro structures are un-
derstood.

Macro level: Assume that the system at the macro level,
or the space of “aggregated parts,” is divided into three or
more component sections {C j}: Treat these system compo-
nents as being independent of each other (in the weak sense
described below). The actual choices of {C j} components
depend on what is being analyzed; they describe how a prac-
titioner decides to decompose a multilevel system into parts.
It is reasonable, for instance, to divide an industrial setting
into the design component D , manufacturing component M ,
and sales component S that consist, respectively, of all ways
to design, manufacture, and market a product. Similarly, a

design project might be divided among three or more units:
all available options for each unit D j constitute a component.
In a multiscale problem, each component could consist of the
aggregated effects of what happens at a micro level. With
health policy, the macro effects may consist of the spread
of different diseases, which reflect the aggregated way in
which, at the micro level, the dynamics of how healthy and
infected individuals interact with one another. In analyzing
the structure of a galaxy (or group of galaxies), the major
components include the total mass, rotational velocity, and
luminosity (e.g., Zwicky [10]).

In many settings, such as D ×M × S , “independence”
is ensured with C i ∩ C j = /0 for pairs; each C j component
consists of different entities. In other settings, the purpose
of each C j could be to extract different information from
a common set. This occurs in Arrow’s setting where, for
three alternatives {A, B, C}, the C j set capturing {A,B} rank-
ings has two elements. The “A � B” element is the subset
{A � B � C, A � C � B, C � A � B} and the cyclic rank-
ing defined by A � B; the “B � A” element is the subset
{B� A�C, B�C� A, C� B� A} with the cyclic ranking
defined by B � A. Thus each element is, respectively, the
subset of all rankings where A � B, and the subset of rank-
ings where B � A. Similarly, the {A,C} set consists of all
rankings where A � C and all where C � A. Notice; each
ranking in each {A,C} element is a ranking in some {A,B}
element. But as the elements do not agree, they extract dif-
ferent information from the common set. All that is needed
here is that no two C j, C i sets, j 6= i, agree.

While I require each C j component to have at least two
elements (because there is nothing to analyze with a single
element), it could include any number of alternatives, even a
continuum of possibilities or degrees of comparison of the
kind that can arise in engineering decisions. It may con-
sist of the various configurations of molecules in a chemi-
cal setting, different design proposals for a project, or what-
ever is being modeled. For many issues, such as those from
physics, elements of a component can include dynamics and
even dynamical interactions. This holds for the galaxy exam-
ple where rotational velocities form one of the components;
it also includes any form of dynamic interactions. In other
words, the actual contents of the components do not matter;
my conclusions depend only on how they interact and how
relationships among levels are determined.

Although the components are independent (as described
above), the divide-and-conquer methodologies addressed
here relate the component parts through compatibility condi-
tions.3 After all, it is easy to imagine a (d,m,s)∈D×M ×S
combination reflecting, respectively, design, manufacturing,
and sales proposals that are not compatible; it is easy to
imagine an incompatible (d1,d2,d3) ∈ D1×D2×D3 con-
sisting of the choices developed by three different units for
a combined design project; it is easy to see how the parts
of a health plan, or a foreign policy for a country, could be
contradictory or counterproductive.

3If a divide-and-conquer method does not have compatibility require-
ments, it may be immune from the negative assertions developed here.



The “dark matter” concern from astronomy reflects the
fact that the computed values of velocity, luminosity, and
mass fail to be compatible with Newtonian theory (Zwicky
[10]). The compatibility condition for Arrow’s Theorem re-
quires the binary rankings of pairs of alternatives to define a
transitive ranking. The purpose of the compatibility condi-
tion used here (and given below) is to describe the structure
of which combinations are, or are not, admissible.

Let me stress that the choice of the compatibility con-
straints are for you to select. Remember, the theme of this
paper is to identify when the standard “divide-and-conquer”
multilevel methodology encounters problems, so the com-
patibility conditions are based on the way in which a system
is divided into parts; they describe how the parts are related.
Thus these conditions can be used to identify what we want,
and do not want, to occur; e.g., the compatibility condition
could be defined to avoid combinations that cause inefficien-
cies or even failures.4 The precise definition of “compat-
ibility,” then, depends on what is being examined, what is
desired, and, in particular, how to reconstruct a system that
is divided into component parts. For the astronomy con-
cern of dark matter, the compatibility conditions require the
mass, velocity, and luminosity values to be consistent with
accepted physical laws.

To eliminate special cases and emphasize only C k com-
ponents that are meaningful in our search for problems that
can occur with this methodology, treat a combination as be-
ing incomplete if it fails to include an element from each C k

component. The compatibility condition is defined to avoid
redundant settings by including only relevant parts from each
component C k. If, for instance, the compatibility conditions
are determined by physical laws, engineering principles, or
economic constraints, the condition eliminates all elements
from each C k that would never occur. With D×M ×S , for
instance, it eliminates all manufacturing approaches m∗ for
which the resulting product always is impossible (or ineffi-
cient) to design and/or sell. Namely, if for all d ∈ D,s ∈ S ,
the combination (d,m∗,s) always fails the compatibility con-
dition, then drop m∗ from M . To capture the above, I require
each ck ∈ C k to be in at least one acceptable combination.

Similarly, to avoid being encumbered with “obvious”
settings and to stress the relevancy of each ck ∈ C k, the con-
dition requires each ck to be in some unacceptable combina-
tion.5 To illustrate with the compatibility condition of tran-
sitive ranking of pairs, any specified ranking, say A � B is
in some transitive ranking, such as A �C � B, but it also is
in intransitive settings such as where B�C, C� A. With the
galaxy example, certain velocity values are acceptable when
coupled with some mass and luminosity choices, but the

4As an illustration, in an ongoing project with A. Chandra, the com-
patibility conditions are, as of now, unspecified conditions about a certain
process that can cause cracks in the product. Part of the project is to use the
information from this paper to identify the appropriate compatibility condi-
tions.

5This condition helps to capture my objective of understanding what
causes incompatible outcomes; i.e., if a particular element always is in com-
patible outcomes, it probably does not cause the experienced difficulties, so
ignore it. Anyway, engineering issues seldom are so accommodating.

same velocity choice can be unacceptable with other mass
values. Using D ×M × S , this condition requires each de-
sign d ∈D to be compatible with certain manufacturing and
marketing proposals, but incompatible with other choices of
manufacturing and/or sales proposals; in a physical setting
combining angular momentum with, say, mass and total en-
ergy, some levels of angular momentum are acceptable with
certain choices of mass and energy, but not with others.

To reflect the reality of organizational and engineering
design, of physics, of economics, etc., the modeling of these
compatibility conditions must allow some flexibility. There
are several ways to do this, where each leads to similar con-
clusions. Motivation for the simple choice used here comes
from physics where changing one of several forces can de-
stroy an equilibrium setting, but it may be possible to com-
pensate by making appropriate changes in a different force
to return the system to an equilibrium status. The dark mat-
ter concern, for instance, searches for an appropriate amount
of matter in a galaxy to return the variables to a compatible
setting. As another illustration, envision a compatible com-
bination (d,m,s) from D×M ×S , but where the marketing
program s′ ∈ S would be more profitable. Replacing the orig-
inal s with s′, however, may make the combination (d,m,s′)
incompatible; e.g., the way the product is manufactured may
not match what is needed with sales. The compatibility con-
ditions reflect what is done in practice; it is to make com-
pensating adjustments in some other component; e.g., there
may be a m′ ∈M that compensates for s′ to make (d,m′,s′)
compatible. With the A � B,B � C,C � A setting, revers-
ing any one ranking returns to the transitivity compatibility
condition.

This flexibility condition is purposely designed to cap-
ture common ways that are used to adapt to changing circum-
stances. In a design project, while (d1,d2,d3) ∈ D1×D2×
D3 may be compatible, the material required to achieve d1
may not be available, so it must be replaced with d∗1 . If the
new (d∗1 ,d2,d3) is incompatible, a natural approach is to de-
termine whether it is possible to modify, say, d3 to d∗3 so that
the adapted combination (d∗1 ,d2,d∗3) is compatible.

The above discussion is formalized with the three parts
of the following definition. To distinguish combinations
(c1, . . . ,cn) that are acceptable “outcomes”, the notation is
changed to (o1, . . . ,on).

Definition 1. A compatibility condition imposed on com-
binations (c1, . . . ,cn) ∈ C 1 × . . .× C n is “acceptable” if it
satisfies the following three conditions:

1. (Completeness) An acceptable combination has a term
from each C k.

2. (Meaningful) For each component C k, each ck ∈
C k is in combinations that satisfy the compatibil-
ity conditions and in combinations that do not.
Namely, for each ck ∈ C k, there exist a combination
(c∗1, . . . ,c

∗
k−1,ck,c∗k+1, . . .c

∗
n) that satisfies the compati-

bility condition. However, there is a compatible combi-
nation (c′1, . . . ,c

′
k−1,c

′
k,c
′
k+1, . . .c

′
n) where, by changing

c′k to ck, the combination (c′1, . . . ,c
′
k−1,ck,c′k+1, . . .c

′
n)

fails the compatibility condition, c∗j ,c
′
j ∈ C j.



3. (Compensative) For any two components, j and k, there
exists a combination (c1, . . . ,cn) satisfying the compat-
ibility condition where a change in the jth component
can be made to create an incompatible combination, but
another change can then be made in the kth component
to make the new combination acceptable.

A combination that satisfies these conditions is called an ac-
ceptable outcome; it is denoted by O = (o1, . . . ,on) ∈ A .

Micro level: Rather than describing what happens
among several levels, only a “micro level” is considered here.
This is because a two-level discussion is easier to follow, and
all results extend to multilevel settings.

The space of inputs, or the micro level parts, could
mimic the macro level structure; e.g., with the D ×M × S
industrial example, the micro parts used to determine a fi-
nal design may also come from D , the sales proposals being
examined may come from S . In other settings, micro com-
ponents can differ significantly from that of the macro level.
This is true if there is incomplete information about the struc-
ture of the micro level, which often is true in nano design.

Whatever is done, assume that some scenario, a “best
case one” if possible, identifies what micro parts, when com-
bined in appropriate ways, determine a reasonable or appro-
priate element for each C i. Denote the identified collection
of “parts” at the micro (or any other level) associated with
the macro component C j as C j∗. In the industry example D
represents the space of accepted designs, so D∗ represents
potential designs that are being considered at the planning
stage. The nature (physical, biological, etc.) of the elements
in C j typically differ significantly from that of the C j∗ ele-
ments; this is because C j consists of macro effects while C j∗

identifies micro effects.

Definition 2. If the space of outcomes is given by C 1 ×
. . .×C n, then the space of inputs is given by C 1∗× . . .×C n∗

where C j∗ is the space of inputs associated with the outcomes
in C j. “Acceptable combinations” of inputs satisfy the com-
patibility conditions of Def. 1. An acceptable combination is
called a “plan.” It is denoted by p = (c1, . . . ,cn) ∈ A .

Again, the compensative condition may reflect equilib-
rium constraints coming from engineering, physics, and even
economics. In the “supply equals demand” pure exchange
model from economics, each unit (which defines a compo-
nent) decides what to sell and buy according to a budget
constraint: The money earned by selling some commodities
equals the cost of buying other commodities. If a change is
made in how much of a particular commodity is bought or
sold, the budget constraint can be re-established with com-
pensating changes in another commodity.

While the compatibility conditions for the inputs and
outcomes may share the same characteristics, more often the
macro and micro conditions differ significantly. (They must
when the nature of macro and micro elements differ.) To
illustrate with the “supply-demand” description, the compat-
ibility conditions at the macro level are more severe; in addi-
tion to the budget constraint, for each commodity the sum of
what is offered must equal what is requested.

Connections: In the informal description of the multilevel
methodology, after dividing a system into parts, appropriate
outcomes are found for each component. My modeling of
this stage reflects how many multilevel projects link the mi-
cro and macro relationships.

This link, this aggregation rule, determines an outcome
as based on information, or plans, that come from different
“participants.” In Arrow’s setting the participants are voters,
in a decision rule the participants are the different criteria,
in a design project the participants can be the different units,
in the D ×M × S setting the three participants are the de-
sign, manufacturing, and sales units, in a physical behavior
or multilevel analysis the participants could be competing
physical/biological forces that contribute to the final effect,
in the galaxy example the three participants are the compu-
tational ways that determine the total mass, velocity, and lu-
minosity.

Assumption 5. (Compatibility; inputs) Assume there are
m ≥ 2 participants. Each participant selects a plan p ∈ A;
there are no restrictions on each participant’s choice. The
list of plans for the participants is called a profile; it is rep-
resented by P = (p1, . . . ,pm).

Each participant must put forth a “plan,” which is a pro-
posal that is consistent across the board; e.g., the design par-
ticipant must advance a design that is compatible with ac-
ceptable manufacturing and sales options. There are settings,
of course, where a “participant’s plan” ignores consistency
conditions; e.g., the way in which rotational velocities in
a galaxy are computed ignores luminosity effects. In these
situations, assume that the consistency conditions are satis-
fied by de fault; the main theorem given below not only still
holds, but it becomes easier to prove.

Assumption 5 suggests that each participant is subject to
the same compatibility conditions, but this is not necessary;
it is easy to envision settings, such as where the participants
represent different physical/biological forces, where the con-
tents of the components (one is physical and the other biolog-
ical) and the compatibility conditions change with the partic-
ipant. These situations remain subject to my conclusions be-
cause it is the structure of the compatibility conditions, rather
than the actual choice of elements or specific conditions, that
matters. For convenience of exposition everything is ex-
pressed as though all participants use the same constraints,
but slight modifications extend everything to where the con-
tent and specific compatibility conditions can differ with the
participant as long as they satisfy the Def. 1 structures.

The aggregation rule combines plans from the profile to
create an outcome O. How this is done is determined by the
physics, biology, economics, organizational, or engineering
principles. The next two assumptions capture basic prop-
erties of many multilevel rules. The first is that unanimity
dominates when it occur. As an illustration, if the design,
manufacturing, and sales plans are, respectively, (dd ,m∗,sd),
(dm,m∗,sm), and (ds,m∗,ss), then the universal agreement
of m∗ for the manufacturing component requires m∗ to be
the M entry for the outcome O. This leads to the following
Pareto condition.



Assumption 6. (Pareto) If the space of inputs and out-
comes have the same components, and if for a profile P, there
is some k where the C k∗ entry in all p j plans is the same ck,
then this agreed upon ck term is the C k entry in O.

If the output elements do not agree with that of the in-
puts, then identify every element ok ∈ C k with a component
ck ∈C k∗ in that if ck is the C k∗ entry for each plan in a profile,
then ok ∈ C k is the outcome; k = 1, . . . ,n.

The next assumption reflects a standard practice; it is
where experts make the decision in their area of exper-
tise. The assumption includes settings where the conclu-
sion for a component is determined in terms of particular
engineering/physical/biological principles. Using my stan-
dard D×M ×S example, as long as the design unit strictly
adheres to plans (so they are compatible), this unit is best
qualified to determine the D component for the outcome. In
other settings, the “expert participant” may represent a par-
ticular physical or biological force; e.g., a system’s angular
momentum is determined by certain physical principles.

Definition 3. (Decentralization) A decisive participant is
one that determines the outcome for a specified component
for the outcome O.

Among the many examples that illustrate these condi-
tions, a striking one comes from multidisciplinary design op-
timization (MDO) where “. . . in a multilevel approach, the
overall analysis and optimization problem is decentralized
into multiple interacting subproblems and the optimization is
performed in each subproblem while they all work together
in concern to obtain the solution to the MDO problem.” (Li
and Azarm [11].)

Main result: These minimal, seemingly innocuous as-
sumptions are desirable and reflect what is done in practice,
but they already cause a negative conclusion. (Theorem 2
more closely resembles Sen’s Theorem [12] than Arrow’s
Theorem.)

Theorem 2. With two or more decisive participants, no
rule exists where the plans and outcomes always satisfy, re-
spectively, compatibility assumptions 5 and Def. 1, and the
rule satisfies the Pareto assumption 6.

This theorem carries the disturbing message that, even
should all participants strictly adhere to the compatibility
conditions, the divide-and-conquer process of determining
a system outcome by seeking “excellence” (or at least seek-
ing a reasonable entry for each component) can cause in-
efficiencies and/or incompatible outcomes. Thus the trou-
bling Sect. 2 kinds of problems also occur with those divide-
and-conquer multilevel methodologies—including decision
rules—that satisfy Thm. 2 conditions; i.e., if a divide-and-
conquer rule satisfies the specified structural conditions, ex-
pect environments where either this approach cannot dis-
cover a conclusion, or the answer is wrong. If the Pareto
condition does not apply, but if each component’s outcome
is determined by particular experts (e.g., specific physi-
cal/biological/engineering laws or principles), then the same
assertion follows and the proof is essentially the same.

Stated in a different manner, even if appropriate system
structures at different levels and a connection among them
exists, there will be settings where this divide-and-conquer
methodology cannot find the actual answer. In other words
and illustrating with a setting where the “experts” are physi-
cal laws, it is not the physics that is at fault; it is the divide-
and-conquer methodology.

Comments illustrating Thm. 2 also come from the MDO
literature. The conclusion means it can be difficult to match
results obtained about the “parts” into a general conclusion,
so it closely matches the second part of the comment that
“Decomposition-based optimization strategies are used to
solve complex engineering design problems that might be
otherwise unsolvable. Yet, the associated computational cost
can be prohibitively high due to the often large number of
separate optimizations needed for coordination of problem
solutions.” (Alyaquot, Papalambros, and Ulsoy [13].)

Because the structural conditions that cause these neg-
ative conclusions are specified, this theorem also suggests
how to improve such methodologies. For a first cut, it re-
quires restructuring how different levels (e.g., experts, re-
liance on physical laws, etc.) are connected. In particular,
the way in which answers are determined for the compo-
nent parts must involve forms of interactions that violate the
Thm. 2 conditions; e.g., finding the appropriate choice for
one component part of a system must more intimately de-
pend upon and involve the search for the choices of other
component parts.6

As with Arrow’s theorem, Thm. 2 asserts that while set-
tings might exist where everything appears to be satisfactory,
caution is required because there must exist other settings
where the results are incompatible, suffer inefficiencies, or
are not reasonable. Because of the path dependency prob-
lem, even should “success” appears to be attained, it is not
clear whether the outcome is a reasonable choice.

The modeling of the components goes beyond static set-
tings to allow dynamics and adaptive approaches. If an ini-
tial design or manufacturing practice, for instance, has flaws,
then adjustments are made to eliminate these difficulties. The
need to make such an adjustment, of course, manifests an in-
efficiency that adds to the cost. Moreover Thm. 2 still ap-
plies; e.g., because of the path dependency issue, we may
not know whether a “corrected” solution is reasonable or in-
ferior.

While the result holds for any structure of the compo-
nents, it is easier to illustrate with discrete examples. In this
spirit, a simple example capturing the idea of the proof (Sect.
7) with D×M ×S is where the only unacceptable outcomes
are (d1,m1,s1) and (d2,m2,s2). Suppose there are two deci-
sive participants where the first is decisive over D and the
second over S . The following table specifies each partici-
pant’s plan where the dash indicates irrelevant information
because the outcome is determined by a different decisive

6As an illustration of how these kinds of problems are avoided in a spe-
cial case, an integrated way is developed in Saari [14] to relate the total mass
and rotational velocities of a galaxy.



participant.

Participant Plan D∗ M ∗ S∗
1 (d1,m1,s2) d1 m1 −
2 (d2,m1,s1) − m1 s1

Outcome d1 m1 s1

(3)

Each plan is compatible, but the (d1,m1,s1) outcome is not.
The D and S components are determined by the decisive par-
ticipants and the M component is determined by agreement
(Pareto).

This example illustrates the phenomenon whereby, even
in idealized settings where different groups strictly adhere to
plans where everything should be compatible, even when de-
cisions are made to reflect a sense of efficiency, it is possible
to end up with incompatible conclusions. With my standard
D ×M × S example, an illustration of Thm. 2 is where it
might not be possible to be manufacture a product as de-
signed, or the design might create difficulties in sales.7

This example also captures the kind of interaction effect,
described above, that is needed to circumvent the theorem;
namely, if the two participants coordinate over the choice to
be made for their respective component, a reasonable out-
come emerges; e.g., it may require a “second-best” choice
for some component to achieve a reasonable outcome for the
system.

4 Path dependency and other consequences
It is reasonable to expect that these promised incompat-

ible (or inefficient) outcomes occur only in highly complex
settings as manifested by strong differences among the plans.
This expectation is what makes the proof of Thm. 2 (Sect.
7) disturbing; the proof illustrates that incompatibilities can
arise even with situations so highly consistent that the plans
deviate only slightly from unanimity! (In the proof, all but
one participant agree on all aspects of the plan; the deviating
participant agrees on all but two of the elements.) In other
words, even though two sets of inputs, or data, or conditions
could appear to be essentially the same, the first set might
lead to success with the divide-and-conquer approach, while
the second does not. Expect even greater disarray to arise in
more realistic situations that involve several decisive partici-
pants.

Thus, even when experts or specified physical laws and
forces use information that carefully satisfies the compat-
ibility conditions, it is possible to have a disordered out-
come; this outcome may be manifested in terms of ineffi-
ciencies, incorrect interpretations of physical effects, or fail-
ure. Also, because such incompatibilities need not always
occur, a particular methodology could enjoy a series of satis-
factory outcomes leading to a mistaken opinion that a phys-
ical law connecting scales, an organizational principle, or a

7In practice, when such an event occurs, an ajustment is made to create
a compatible outcome. But, the path dependency concern raises the issue
whether the adjustment is an appropriate one. Also, the adjustment involves
an extra step, which increases costs, and reflects the “inefficiency” message
of Thm. 2.

multiscale/multilevel relationship has been established. But
this need not be true for a technique that satisfies Thm. 2.
A concern is that when a guaranteed incompatible outcome
occurs, blame might be mistakenly placed on faulty data or
inputs rather than the true source —the nature of aggrega-
tion/multilevel rules.

As asserted, a way to avoid the Thm. 2 problem is to
impose more stringent constraints on how to determine the
outcome for each component; e.g., a greater level of inter-
action, communication, or exchange of information among
the participants is required. Rather than relying on just an
expert’s choice, for instance, a component’s outcome could
be based on information coming from the plans of all partic-
ipants. But a satisfactory methodology must be more subtle
because even here problems can arise. For a simple example
consider the three component situation of D,M ,S , where
each component has two entries. The eight possible combi-
nations are

(d1,m1,s1), (d1,m2,s1), (d1,m1,s2), (d1,m2,s2),
(d2,m1,s1), (d2,m2,s1), (d2,m1,s2) (d2,m2,s2).

The smallest set of admissible plans (Sect. 7),
denoted by As, consists of three plans with the
{(d2,m1,s1), (d1,m2,s1), (d1,m1,s2)} format; the five
remaining combinations are incompatible. The largest pos-
sible choice, call it A l , consists of six plans where (with a
relabeling of the indices if necessary) the only incompatible
plans are (d1,m1,s1) and (d2,m2,s2). Indeed, (Sect. 7),
with a relabeling of subscripts if necessary, any A satisfying
As ⊂ A ⊂ A l is a set of admissible plans.

Suppose the plans proposed by design, manufacturing,
and sales are as in Eq. 4: to ensure that each participant’s
plan influences the outcome for each component, determine
the choice with a majority, or a two-thirds vote.8 The incom-
patible outcome is as described in the last row:

Component D M S
Design d1 m1 s2

Manufacturing d2 m1 s1
Sales d1 m2 s1

Outcome d1 m1 s1

(4)

These plans come from As, where As ⊂ A , so this incom-
patibility holds for all choices of A . This incompatibility or
inefficiency is not restricted to averaging rules; it holds for
most ways to aggregate. This conflict arises because the de-
cision for each component is made independent of the other
decisions; thus these aggregation rules suffer a problem sim-
ilar to that described in Thm. 2.

A troubling result comes from the “step-by-step pro-
cess,” which is a natural “division of labor” way to create an
outcome. This is where a reasonable choice is found for as
many components as possible and the choices for remaining

8“Majority vote” is used only to illustrate; the same effect occurs with
other paired comparison rules.



components are adjusted to ensure a compatible combina-
tion. Notice how this approach describes a form of the earlier
adjustment or “muddling” procedure used to complete a sys-
tem analysis after natural conclusions are found for several
of the parts. For instance, after finding a reasonable design
choice for D , then, if necessary, appropriately modify the
manufacturing and sales plans to ensure a compatible com-
bination; e.g., if As defines the set of compatible outcomes,
selecting d2 requires selecting m1 and s1. A larger set of
compatible options, such as given by A l , offers flexibility in
achieving optimality; e.g., the extra choices in A l permit us-
ing any desired entry from D and M , but once these choices
are made, they may require an adjustment in the sales plan to
achieve a compatible combination.

While “step-by-step” strategies and their variants are
not unusual, expect them to generate inefficiencies, which,
for engineering, may translate into lost profits or incorrect
connections among scales. In particular, these strategies ad-
mit path-dependency problems with the inherent inefficien-
cies or incorrect conclusions. To demonstrate with a sim-
ple example, it can be shown (using ideas in Sect. 7) that
with seven components and a possible relabeling of the in-
dices an A includes combinations where all but one sub-
script is “1” or a “2;” e.g., the following three plans are in
A where (a1,b1,c1,d1,e1, f1,g1) is an incompatible combi-
nation. (The choices mimic Eq. 1.)

a1 b1 c1 d1 e1 f1 g2
a2 b1 c1 d1 e1 f1 g1
a1 b2 c1 d1 e1 f1 g1

(5)

Select an order over which choices are made; over each
component, make an “reasonable” choice represented here
by a majority vote. For any remaining components, use the
“muddling approach” of making choices to ensure a com-
patible outcome. As with Eq. 1, by using different orders
in which this “step-by-step” decision process is carried out,
seven different outcomes emerge; they differ by which alter-
native has the subscript 2! For instance, if the process starts
with selecting an a j and works down through the alphabet,
the selected entries are a1,b1,c1,d1,e1, f1 until the g j choice
is to be made. To be compatible, the g j choice must be g2
leading to the (a1,b1,c1,d1,e1, f1,g2) outcome. To have an
outcome where c2 must be selected, use the (d,e, f ,g,a,b,c)
order; the outcome is (a1,b1,c2,d1,e1, f1,g1). It is highly
unlikely that all seven different outcomes are “reasonable,”
or that all seven capture the appropriate complexity behav-
ior, but each could be selected. The message, then, is to
expect inefficiencies from step-by-step approaches because
path dependency is an accompanying, unavoidable problem.
(This example illustrates Thm. 2 by assigning an appropriate
decisive participant for the a j, the b j, and the g j outcomes;
Pareto handles all others.)

5 Parts vs. whole; Arrow’s Theorem
Let me stress that Thm. 2 does not claim there is an ab-

sence of a relationship between the macro and micro levels;

it does not assert that all multilevel approaches must suf-
fer these failings. It states that any divide-and-conquer ap-
proach with the catalogued properties cannot be expected to
find these connections.

To appreciate how to avoid the consequences of Thm. 2,
recall the alternative description of Arrow’s Theorem where
“Arrow’s Theorem asserts that when a rule uses the inputs
from two or more agents (or criteria), and it is based on IIA
and the Pareto conditions, then there always exist situations
where the true structure of the whole need not resemble the
answers developed by using information from the assembly
of the parts.”

There are many ways to define a “whole” of societal
rankings; e.g., use the plurality vote or Borda Count. (The
Borda Count tallies an n-alternative ballot by assigning n− j
points to the jth ranked alternative, j = 1, . . . ,n.) This inter-
pretation of Arrow’s result asserts that no matter how clever
the approach that is used to determine the outcome for the
parts, settings always exist where the answers obtained for
the parts disagrees with the whole. Even more; this theorem
underscores the dangers of trying to establish the structure of
the whole by concentrating on the “parts.”

Theorem 2 reflects the same feature; the two conditions
require that the outcomes for “parts” of a system are deter-
mined in a partly independent manner. An informal inter-
pretation of Thm. 2, then, is that problems arise by trying to
determine the structure, or complexity, of a multilevel system
(of whatever is being considered) with a standard divide-and-
conquer multilevel approach.

Shortly after the statement of Thm. 2, I assert that ways
to improve these approaches must be of the type where
answers for one component are based on what happens
with other components. A useful analogy, which illustrates
the problem and indicates what needs to be done to solve
it, comes from Rubik’s Cube. The macro “parts” of this
cube involve the colors on each of the six faces where the
objective—the compatibility condition— is for each face to
have a fixed color. The micro level includes all possible
mixed combinations of the individual cubes. (An incom-
patible setting arises by changing the colors on some cube.)
What captures the sense of Thm. 2 is to try to obtain the
macro solution (i.e., solve the problem) by emphasizing in-
dividual macro “parts.” That is, if an approach tries to solve
the problem by first solving it for a particular face, it will
be counter-productive. Instead, to solve the Rubik’s Cube
problem, a coordinated system approach must be discovered
where the choice of each rotation takes into consideration
how it affects all faces. Rather than solving the problem as a
collection of parts, the approach must coordinate interactions
among the different faces.

Using the lessons learned from Rubik’s Cube to resolve
Arrow’s Theorem, the goal is to replace Arrow’s conditions,
which require the “whole” to agree with the answers found
by considering each part separately, with requirements that
require answers for the separate parts to be determined in a
coordinated manner. By doing so, Arrow’s dictatorial con-
clusion is replaced with the Borda Count (Saari [9]). Sim-
ilarly, efforts to replace the negative Thm. 2 with positive



conclusions must also be guided by the lessons of Rubik’s
Cube; such efforts will require finding the appropriate coor-
dinated interactions when determining answers for each part
of a system. (A solution for pairwise comparisons is in Saari
and Sieberg [15].) While answers will be specific to the con-
cern being examined (e.g., [14]), the general principle is the
coordinated action.

6 Final comment
Rather than relying upon demanding requirements, the

conditions posed in Thm. 2 represent reasonably common
approaches in economics, biology, physics, engineering,
manufacturing, organizational design, and so forth. Out-
comes often are determined by emphasizing, at some level,
“parts”—perhaps as manifested by “special physical forces.”
Thus, inefficiency and even impossibility must be expected.
(More general results are being developed with positive as-
sertions.) Theorem 2 encourages caution. When difficulties
arise, in addition to worrying whether the data is faulty, em-
phasis should be directed toward re-examining the method-
ology.

7 Proofs
Proof of Thm. 2. Suppose there are two decisive partic-
ipants where the first determines C j and the second de-
termines the C k element of the outcome. Select any out-
come O = (o1, . . . ,on) and an associated plan p = (c1, . . . ,cn)
where both satisfy the compensative condition of Def. 1 with
respect to a specified j and k; e.g., there is a c′k and an asso-
ciated o′k so that changing ck to c′k and ok to o′k create incom-
patible combinations.

Plan p is selected by the first participant, who deter-
mines the C j component, and by all other participants except
for the second decisive participant. The second participant,
who selects the C k component, selects plan pk where ck is
replaced with c′k to create an incompatible combination, and
then replaces c j with any compensating c′j to create a com-
patible plan.

For each i 6= j,k, the Pareto condition determines the C i

component for the outcome to be the common ci leading to
o j. For the kth component, the first decisive participant deter-
mines the outcome, which is o j. But for the kth component,
the second decisive participant selects c′k creating an incom-
patible outcome with o′k. The same construction applies to
settings with more decisive participants. �
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Figure 1 Three components
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Proofs of the assertions made about three components.
The assertions made about plans allowed with three compo-
nents, say D,M ,S , each having two entries are verified first.
The situation can be captured with the geometry of the cube
in Fig. 1, where elements of D,M , and S are represented,
respectively, by two points on the x, y, and z axes. The eight
possible combinations correspond to the eight vertices. Us-
ing the names attached to the vertices, the choices are

7 = (d1,m1,s1), 3 = (d1,m2,s1), 1 = (d1,m1,s2), 2 = (d1,m2,s2),
5 = (d2,m1,s1), 4 = (d2,m2,s1), 6 = (d2,m1,s2) 8 = (d2,m2,s2).

As each element must be in at least one incompatible
combination, the minimum number of incompatible com-
binations is two. To have only two incompatible combina-
tions, one element from each of the three components must
be in one combination, say (d1,m1,s1) and the other ele-
ments from that set, which would be (d2,m2,s2), must be in
the second combination. In any selection of vertices, when-
ever there are precisely two incompatible combinations, they
must be represented by diametrically opposite vertices.

With precisely two incompatible combinations, we must
show that the six remaining combinations satisfy the com-
patibility conditions to be plans. First notice that they satisfy
completeness and meaningfulness conditions. To verify the
compensative condition, notice that a j,k condition requires
finding a plan whereby a change in the jth component creates
an incompatible combination. Using the figure, changing the
entry of a component is the same as moving from one vertex
to the other on an appropriate connecting cube edge in the
jth direction. For instance, a j = 2 change is on one of the
four edges parallel to the y-axis; e.g., by starting at vertex 2,
the change moves to vertex 1.

For the change in a plan to result in 7, the vertex must
be on an edge emanating from 7; e.g., the vertex is identified
with an odd integer {1,3,5}. From 7, a change in any com-
ponent returns to a plan in this set, so comprehensiveness is
satisfied. Using this “L” shaped move, the set of vertices as-
sociated with 8 are the even integers {2,4,6}. As any set
with the smallest number of plans must obey these L-moves
relative to an incompatible combination, the compensative
condition is satisfied if A includes either {1,3,5} or {2,4,6},
which verifies the As ⊂ A ⊂ A l assertion. A similar argu-
ment shows that the smallest A set with n components has n
plans; e.g., with n = 7, one choice for the smallest A is the
natural extension of Eq. 1.
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