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Abstract

This paper considers a situation in which participants with heterogeneous

ability types are grouped into different competitions for performance ranking.

A planner can allocate both the participants and a fixed amount of prize

money across all-pay contests in order to maximize a weighted sum of total

performance subject to individual minimal performance requirements. Both

the weights and requirements are type-specific. We show that, whatever the

weights and requirements are, separating – assigning participants with the

same ability together – is superior to mixing – assigning participants with

different abilities together. Moreover, we also characterize the associated

optimal prize structures.
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1 Introduction

Consider a situation in which a school wants to assign a group of students to different

classrooms. Should the school group students with similar abilities together – a

practice known as “tracking”– so that high ability students are separated from

low ability ones, or should the school have mixed classrooms in which students of

different abilities are grouped together? Tracking was very common in US schools

but became less popular in the late 1980s due to the criticism of trapping students

of low socioeconomic status in low-level groups. However, tracking has returned to

the attention of educators recently. According to Yee (2013), “... of the fourth-

grade teachers surveyed, 71 percent said they had grouped students by reading

ability in 2009, up from 28 percent in 1998”. Different grouping policies can be

observed not only over time but also across different countries. For instance, in

Germany, pupils after primary schooling are grouped into three types of secondary

schools to receive training for blue-collar apprenticeships, apprenticeship training in

white-collar occupations, or training for further education. In contrast, tracking was

explicitly discontinued in China in 2006.1 Not surprisingly, tracking has also been

a controversial topic in the economic literature on education, and there has been a

long debate on this issue from many different perspectives: students’ achievement,

equity, and even morality.2

In this paper, we examine the competitive effects of tracking and ask whether

or not it enhances students’ performance when their grades or rewards depend on

their relative performance.3 Two features are important to a social planner. First,

zero effort or non-performance is not desirable. For instance, the planner may want

every student to exert enough effort to graduate or at least attend class every-

day. Moreover, the minimal performance requirements may vary across students

with different abilities. These requirements impose a challenge to go beyond well-

studied contest forms. For instance, if the players are identical, an all-pay auction

1Policies that forbade tracking in schools started in the 1990s, and a national law was passed
in 2006. In contrast, tracking remains common in Chinese universities.

2See, for instance, Loveless (2013).
3We do not consider the equity issue nor the effects of tracking on the quality of instruction.

If students are tracked, the classes are more homogeneous and therefore they could be easier to
teach. See, for instance, Duflo et al. (2011).
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maximizes the total performance (Baye et al. 1996). However, the minimal per-

formance requirements are violated as there are equilibria in which some players

exhibit non-performance.

Second, the planner may weigh students of different abilities differently. For

example, a school may care more about high ability students’ performance than

other students. As a result, it is important to examine how different minimal

performance requirements and how weights on different ability groups would affect

the comparison of tracking and mixing.

Our results imply that, with a well-designed award system, tracking/separating

– assigning students with the same ability together – is superior to mixing – assign-

ing students with different abilities together. This result is true however a planner

weighs different ability groups, and with whatever minimal performance require-

ments she has. In particular, it holds even if the planner only cares about the

students of the lowest ability.

Our model also applies to the quota systems in college admissions, which let

minority students compete separately for the reserved admission quota.4 Compared

to majority students, it is usually more costly for the minority students to acquire

the same level of academic achievement. Therefore, the quota system separates

students according to their costs, while admission without affirmative action allows

all the students compete in a grand contest. Besides education, the results in this

paper are also applicable to a variety of competitions. For instance, in the early

nineteenth century, there were no weight classes in boxing. Then eight weight classes

were introduced before the Second World War, and nine more were introduced

afterwards. The history of other sports such as weightlifting and wrestling also

shares similar trends. The heavier athletes have an obvious advantage in strength,

so why would we want to group players with similar abilities into the same class

and let them compete only within their class? This takes into consideration of

the issue of fairness, and our results suggest that separating athletes according

to their abilities could also increase their effort and therefore make matches more

entertaining.

4See Bertrand et al. (2010) for more details on quota systems in India.
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The key characteristics common to these scenarios are: participants with po-

tentially different abilities/costs who are divided into different groups to compete;

heterogeneous prizes awarded solely on the basis of relative performance; and sunk

costs of participants’ investments.

This paper builds on Siegel’s (2010) model of all-pay contests by introducing het-

erogeneous prizes and a planner who can allocate players and prize money across

contests. Specifically, suppose there is a fixed amount of prize money and a group

of players with different ability types. We assume a deterministic relation between

effort and performance and assume these to be equal. The players of the same type

have the same constant marginal cost of performance/effort. A lower cost of perfor-

mance represents a higher ability. A planner can assign the players to any number

of all-pay contests and divide the money as potentially heterogeneous prizes in the

contests. In each contest, the players in it choose their performance simultaneously;

the player with the highest performance receives the highest prize, the player with

the second highest performance receives the second prize, and so on. The planner

wants to maximize the weighted sum of all players’ performance with type-specific

weights. Moreover, the planner can have different minimal performance require-

ments for different players. The minimal performance, for instance, may represent

graduation requirements for students.

Our main result is that, whatever the weights are, grouping players with similar

abilities together is always superior to mixing them. Moreover, we also characterize

the associated optimal prize structures. Intuitively, separating leads to the most

intense competition since each player has to compete against opponents who have

the same ability as he does. Because of the intense competition, the players enhance

their performance so much that all of them receive zero payoffs. As a result, for any

set of contests with mixed players, there always exists contests of separated players

with at least as much total expected performance for each ability type and a higher

total expected performance for at least one ability type. In other words, having

separated players dominates having mixed players in terms of the total expected

performance for different types.

It is important that the planner can choose the prizes while grouping the play-
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ers. In situations such as tennis or golf tournaments, choosing the prize values for

different rankings is a very important part of contest design. Moreover, allowing

the planner to choose prizes does not preclude the possibility that players’ values of

ranking are partly determined outside the tournaments. For instance, if the plan-

ner wants to have a first prize of $200K and she knows that the champion will also

receive an endorsement deal worth $100K, then she can simply award the difference

of $100K to the champion. A similar argument applies when a school has a budget

for scholarships.

There are several challenges that we have to overcome in order to establish these

results. First, with asymmetric players and heterogeneous prizes, the equilibrium

of an all-pay contest may involve complicated mixed strategies. To our knowledge,

equilibrium characterization for general asymmetric contests with heterogeneous

prizes is still an open question. For instance, Bulow and Levin (2006), in a set-

ting of labor market matching, allow prizes with constant differences; Siegel (2010)

studies contests with identical prizes; Xiao (2013) examines quadratic (the second-

order difference in prizes is a positive constant) or geometric (the ratio of successive

prizes is a constant) prize sequences. In contrast, this paper allows any prize struc-

ture. The techniques developed in this paper allow us to show that contests with

asymmetric players are never optimal. As a result, although we do not know the

equilibrium characterization, we can still characterize the optimal way to group

players.

Second, there could be multiple equilibria, and equilibrium selection may change

the comparison between separating and mixing. Multiple equilibria are demon-

strated in similar settings (Baye et al. 1996, Barut and Kovenock 1998). In par-

ticular, Xiao (2013) provides an example with exogenous prizes which shows that,

depending on the equilibrium selection, separating may result in higher or lower

total expected performance than mixing. The results in this paper apply to all

equilibria, and therefore are robust to equilibrium selection.

Finally, the generality of the model also imposes extra challenges. The current

paper does not restrict the number of contests, the prize structures, or the player

composition in contests, which means the planner has to compare a large number
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of choices. Moreover, this paper accommodates a very general objective function

for the planner: she can assign asymmetric type-specific weights to the players’

performance, and she can impose different minimal performance requirements on

different types.

Literature Baye et al. (1993) show that a politician can extract higher rent by

excluding the lobbyists, who have higher valuations of winning, from the compe-

tition. This is referred to as the “exclusion principle”, and it applies to many

situations besides lobbying. However, our paper considers different scenarios, in

which one of the planner’s objectives is to ensure minimal performance levels are

met for the players. Therefore, excluding a player is not optimal as it would re-

sult in zero effort/non-performance from him. Moreover, they consider a model of

an all-pay auction in which the lobbyists compete for a single prize. In contrast,

a single prize also leads to violation of the minimal performance requirements in

our setup. According to our optimal prize structure, we need multiple potentially

heterogeneous prizes to provide incentive for all the players in a contest, so each

player’s performance is above his particular minimal requirement.5

Moldovanu and Sela (2006) compare different ways to group ex ante symmetric

players across contests. They find that total expected effort is maximized by a

grand contest including all players, while the expected highest effort is maximized

by splitting players into multiple contests and letting winners of each contest com-

pete in a final contest. Fu and Lu (2009) find that merging multi-winner contests

of symmetric players can increase total expected effort. In contrast, this paper

considers players with asymmetric abilities. This assumption is crucial as we are

considering whether players should be separated according to their abilities.

In the education literature, Lazear (2001) studies tracking when students are

awarded according to their absolute performance. He shows that tracking results in

higher total performance than mixing. Studies on peer effects also discuss grouping

players across competitions (see, for instance, Board 2009 and Cooley 2009). The

players’ payoffs in these papers also depend on their absolute performance, while

5Remark 2 illustrates this piont in an example.
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we consider the situation in which students are awarded according to their rela-

tive performance, or the ranking of their performance instead. Hickman’s (2009)

analysis on different affirmative action policies on college admissions is also related.

He considers a different setup in which minority students have private costs that

are stochastically higher than those of majority students, and they compete for

prizes/seats of exogenous values. In a quota system, the two groups compete sepa-

rately for their respective reserved seats. Compared to the case without affirmative

action, the quota system has unclear effects on average performance within groups

and within the overall population. In contrast, our paper considers the joint deci-

sion of grouping students and allocating prizes/resources and finds that separating

leads to higher performance than mixing.

The literature on status competition studies the optimal way to divide players

into different status categories when the players’ payoffs depend directly on their

status (see for instance Moldovanu et al. 2007 and Dubey and Geanakoplos 2010).

In our paper, performance ranking does not affect players’ payoffs directly. Instead,

the payoffs depend on the prizes awarded according to the players’ ranking.

The remainder of the paper is organized as follows. Section 2 provides a simple

example illustrating how separating is superior to mixing. Section 3 introduces the

model and Section 4 presents the main results on optimal grouping and optimal

prize allocations. Section 5 shows that the main results are robust to small cost

differences within each type, and Section 6 concludes.

2 An Example

Consider a scenario with four players and one unit of prize money. Two of the

players are of H-type and the others are of L-type. The H-type players have a

marginal cost of cH = 1, and the L-type players have a marginal cost of cL = 2.

Suppose that the players are mixed such that there is one H-type and one L-

type player in each contest. Each contest has only one prize of value 1. The two

players in a contest compete for the prize in an all-pay contest. More precisely,

each player chooses a performance level simultaneously, and the prize goes to the
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Contest Payoffs
Performance of a Performance of a

H-type player L-type player

Mixing
Players: H, L uH = 1/2

3/4− uH = 1/4 1/8
Prize: 1 uL = 0

Separating

Players: H, H
u′H = 0 3/4− u′H = 3/4Prize: 3/2

Players: L, L
u′L = 0 1/8Prize: 1/2

Table 1: Mixing vs. Separating

player with the higher performance. A player’s expected payoff equals his expected

winnings – the expected value of the prize one may receive – net of his expected

cost of performance.

As we will show later, the expected winnings in equilibrium are wH = 3/4 for

a H-type player and wL = 1/4 for an L-type player, and the expected payoffs are

uH = 1/2 and uL = 0. Notice that one’s payoff is his expected winnings net of his

expected cost, so a H-type player’s expected cost is wH−uH , his expected winnings

minus his payoff. Since the expected cost equals the product of his marginal cost

and his expected level of performance, the expected level of performance is (wH −

uH)/cH = 1/4 for a H-type player and (wL − uL)/cL = 1/8 for an L-type player.

Since uH = 1/2 > 0, the H-type players receive positive rent in the equilibrium.

Now suppose the players are separated. Then, the H-type players are in one

contest and the L-type players are in the other. We can verify that the payoffs

are zero for all players. Suppose the prize is 0.5 for the L-type contest and 1.5

for the H-type contest. As a result, each H-type player’s expected performance is

(3/4 − 0)/cH . Note that the expected performance is higher than (3/4 − uH)/cH

– his expected performance in a contest with mixed types – because the H-type

player receives zero rent, with uH = 0. Therefore, the total expected performance

is 0.5/cL = 1/4 for L-type players and 1.5/cH = 3/2 for H-type players. The

equilibrium outcomes with mixed and separated players are summarized in Table

1.

As illustrated in the table, the performance levels in the mixed contests are

dominated by those in the contests with identical players in the sense that the total

expected performance of L-type players is unchanged and the total expected per-
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formance of H-type players is lower in mixed contests. The remainder of the paper

generalizes these insights as follows: if a planner wants to maximize the weighted

average performance of different types subject to minimal performance require-

ments, separating is superior to mixing for any weights and minimal performance

requirements the planner has.

3 Model

There is one unit of prize money and a set of players, N . The players are of

T different types. Each type t has nt players. We assume nt ≥ 2 for all t, so

there are similar players of each type.6 There is a deterministic relation between

effort and performance, and we assume these to be equal. Players of t-type have

the same marginal cost of performance, ct. Without loss of generality, we assume

0 < c1 < c2 < ... < cT .

A planner’s decision has two parts: assigning the players into any number of

contests, and dividing the prize money as prizes for each of the contests. More

precisely, the planner’s choices can be represented by a partition of the players P ,

and a prize structure V . The partition P is a family of non-empty subsets of N

such that N is a disjoint union of the subsets. Suppose partition P consists of m

sets, then we denote P = {P1, ..., Pm}. The prize structure V is a family of vectors

{v1, ...,vm}, where vector vk ∈ [0, 1]#Pk and #Pk is the number of players in set

Pk. A zero entry of vk means one of the prizes is zero. Therefore, the partition P

and prize structure V characterize m individual contests. In particular, the subset

Pk ⊂ N is the set of players assigned to contest k, and vk represents the prizes in

contest k. Since there is no restriction on the number of contests, the planner may

assign all the players into one contest, that is, P = {N}.

Let us describe the competition in each contest. In a contest characterized by

Pk and vk, all the players in Pk choose their performance/effort levels in [0,+∞)

simultaneously. The player with the highest performance receives the highest prize

in vk; the player with the second highest performance receives the second highest

6This assumption is relaxed in Section 5.
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prize in vk; and so on. In the case of a tie, the prizes are allocated randomly such

that no tying player loses with certainty.7 If a player wins a prize, his payoff is his

prize net of his cost of performance. If a player wins no prize, his payoff is zero minus

his cost of performance. All players are risk neutral. This paper considers Nash

equilibria. A profile of strategies constitutes a Nash equilibrium if each player’s

(mixed) strategy assigns a probability of one to the set of his best responses against

the strategies of other players.

The planner’s objective can be characterized by two sets of parameters: weights

(α1, ..., αT ) and minimal performance (r1, ..., rT ). First, the planner wants to

maximizes a weighted sum of expected performance, and she attaches weight αi to

a t-type player i’s expected performance. We assume that αi ≥ 0 and Σn
i=1αi = 1.

The weight αt represents the relative importance of t-type players to the planner,

and she only cares about the performance of t-type if αt = 1. Second, the planner

wants the players of all types to exhibit some performance in competition. That is,

a t-type player’s expected performance should be at least rt > 0. The requirements

can represent the minimal performance to graduate, or the requirement to attend

class every day. Note that values in r1, ..., rT need not be the same.

Let E[sit ] denote the equilibrium expected performance of player it of t-type.

The planner chooses partition P and prize structure V to maximize the weighted

sum of expected performance subject to the minimal performance requirements.

Therefore, her problem is

max
P,V

T∑
t=1

(
αt

nt∑
i=1

E[sit ]

)
(1)

s.t. E[sit ] ≥ rt for it = 1, ..., nt and t = 1, ..., T .

If Σtrt/ct > 1, the minimal performance requirements are never satisfied because

of limited prize money. As a result, we assume that the minimal performance

requirements are not too high. That is, Σtrt/ct ≤ 1.

7In many tournaments (for example, in golf), ties are resolved by sharing the prizes. As an
example, if two players tie with the second-highest score, then each receives the average of the
second and third prize. Our formulation allows this kind of sharing.
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4 Optimal Grouping

If a contest only has one player, his equilibrium performance level must be zero,

which violates his minimal performance requirement. Therefore, we only need to

consider the partitions in which each contest contains at least two players. The

planner is said to separate the players if each contest contains players of a same

type. Otherwise, we say the planner mixes the players. Note that the planner needs

at least T contests to separate the players, but she can have more than T contests

by splitting a larger contest into smaller ones. The main result of this paper is as

follows.

Theorem 1 For any given weights and minimal performance levels, the total weighted

expected performance is maximized only if the players are separated.

In the remainder of this section, we prove Theorem 1 through a sequence of

lemmas and specify the associated optimal prize structure in Proposition 1. The

first lemma ensures that each contest has an equilibrium.

Lemma 1 In each contest, there exists no Nash equilibrium in pure strategies, but

there exists a Nash equilibrium in mixed strategies.

The proof of this lemma is in the Appendix. In contrast to Siegel’s (2010) exis-

tence proof for contests with homogeneous prizes, this lemma ensures equilibrium

existence in asymmetric contests with heterogeneous prizes.

Consider a contest with a player set Pm and a prize vector vm. If a player i

chooses performance level s, his expected winnings W (G−i(s),vm) depend on the

strategies of others G−i(s) ≡ (Gj(s))j∈Pm\{i} and the prizes vm.

Lemma 2 Given any equilibrium in a contest with different prizes, let s̄j be player

j’s highest performance in the support of his equilibrium strategy. Then,

W (G∗−i(s̄j),vm) ≥ W (G∗−j(s̄j),vm), (2)
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where W (G∗−i(s̄j),vm) is player i’s expected winnings if he chooses s̄j while others

choose the equilibrium strategies G∗−i(s), and W (G∗−j(s̄j),vm) is player j’s expected

winnings if he chooses s̄j while others choose the equilibrium strategies G∗−j(s).

Proof. There are two possibilities. First, suppose s̄j = 0. It means player j chooses

performance level 0 with probability 1, then Lemma 5 implies that player j loses

with certainty. Hence W (G∗−i(s̄j),vm) cannot be lower than j’s expected winnings

in the equilibrium. That is, inequality (2) holds.

Second, suppose s̄j > 0. Lemma 5 implies that no player chooses s̄j with positive

probability in the equilibrium. Therefore, if player i chooses performance level s̄j,

his performance is higher than j’s with certainty, so player i never receives the

lowest prize. As a result, player i’s expected winnings W (G∗−i(s̄j),vm) is the same

as if player j and the lowest prize were excluded. More precisely, if we exclude

player j and the lowest prize, the new contest has player set Pm\{j} and prize

vector v′m, which is vm with the lowest prize removed. Let Ŵ (G∗−i−j(s̄j),v
′
m) be

i’s expected winnings in the new contest if the other players are choosing strategies

G∗−i−j(s) ≡ (G∗k(s))k∈Pm\{i,j}. Then we have

W (G∗−i(s̄j),vm) = Ŵ (G∗−i−j(s̄j),v
′
m). (3)

Recall that player i does not choose s̄j with positive probability. If player j

chooses performance s̄j, player i’s performance level si is strictly below s̄j with

probability G∗i (s̄j). Similar to the above argument, player j’s expected winnings by

choosing s̄j conditional on si < s̄j is Ŵ (G∗−i−j(s̄j),v
′
m). With probability 1−G∗i (s̄j),

player i’s performance level si is strictly above s̄j. Player j’s expected winnings

by choosing s̄j conditional on si > s̄j is Ŵ (G∗−i−j(s̄j),v
′′
m), where v′′m is vm with

the highest prize removed. Therefore, we can rewrite j’s expected winnings at
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performance s̄j as

W (G∗−j(s̄j),vm)

= G∗i (s̄j)Ŵ (G∗−i−j(s̄j),v
′
m) + (1−G∗i (s̄j))Ŵ (G∗−i−j(s̄j),v

′′
m)

= Ŵ (G∗−i−j(s̄j),v
′
m)

−(Ŵ (G∗−i−j(s̄j),v
′
m)− Ŵ (G∗−i−j(s̄j),v

′′
m))(1−G∗i (s̄j)). (4)

Without loss of generality, suppose the entries in v′m and v′′m are ranked from

the highest to the lowest. Since the prizes in vm are not identical, all entries of

v′m − v′′m are non-negative, with at least one entry is positive. As a result, the ex-

pected winnings given the same strategies is also higher, that is, Ŵ (G∗−i−j(s),v
′
m) >

Ŵ (G∗−i−j(s),v
′′
m). Therefore, (4) implies

W (G∗−j(s̄j),vm) ≥ Ŵ (G∗−i−j(s̄j),v
′
m) = W (G∗−i(s̄j),vm),

where the equality comes from (3). Hence, if s̄j > 0, we also have (2).

One of the challenges is that there may be multiple equilibria in a contest. Our

method relies only on the properties that are true for any equilibrium, thus we

overcome this challenge. The lemmas below present two such properties of any

equilibrium.

Lemma 3 If all the players in a contest are identical, each player’s expected payoff

in any equilibrium must equal to the value of the lowest prize.

Proof. Given any equilibrium, let s denote the lowest performance level in the

supports of the mixed strategies. Then, at least one player’s mixed strategy has

s as the lower bound of its support. If s > 0, this player wins the lowest prize

with performance s. On the other hand, he could also win the same prize with

performance 0, which incurs a lower cost. This is a contradiction. As a result, we

must have s = 0, and the payoff of this player equals the lowest prize. We will show

below that no player can have a different payoff.
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If the prizes are identical, everyone receives the same prize hence the lemma is

true. Suppose the prizes are not identical, and suppose player i’s payoff equals the

lowest prize and player j’s payoff in an equilibrium is higher than the lowest prize.

Let s̄j be the highest performance level in the support of player j’s mixed strategy

and s̄i be the counterpart for i. Lemma 2 implies that player i’s expected winnings

with performance level s̄j is no lower than player j’s. In addition, notice that both

players have the same marginal cost, so player i’s payoff at s̄j is no lower than that

of j at s̄j. This contradicts the assumption that player j’s payoff is higher than i’s.

Lemma 4 If the players in a contest are not identical and the prizes are different,

at least one player’s payoff is higher than the lowest prize in any equilibrium.

Proof. Suppose player i and j have different costs, with ci > cj. Since the payoffs

cannot be lower than the lowest prize, it is sufficient to show that players i and j

have different payoffs. Assume otherwise that uj = ui, where ui and uj are i and

j’s expected payoffs in an equilibrium. According to Lemma 2, player j’s expected

winnings at s̄i is no lower than i’s at s̄i. Therefore, if player j deviates to s̄i, his

expected winnings is not lower than i’s, but his cost is lower than i’s. Hence, the

deviation results in j’s payoff higher than ui. This is a contradiction because i and

j have the same payoff by assumption.

Now we can proceed to prove Theorem 1. Denote St ≡
∑nt

i=1E[sit ] as the

total expected performance of all t-type players. Roughly speaking, we show below

that any performance outcome (S1, ..., ST ) with mixed players is dominated by an

outcome (S ′1, ..., S
′
T ) with separated players in the sense that Si ≤ S ′i for all i and

Si < S ′i for some i. This shows that separating is superior to mixing for any type-

specific weights.

Proof of Theorem 1. Suppose the players are mixed. Consider an equilibrium in

which the minimal performance requirements are satisfied. That is, E[sit ] ≥ rt for

any type t. Given the equilibrium, let (S1, ..., ST ) be the performance outcome, Ut

be t-type players’ total expected payoff, and Wt be their total expected winnings.
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For each player, his payoff equals his expected winnings net of the cost of his

expected performance, so we have Ut = Wt − ctSt, which gives us the expression of

his expected performance

St = (Wt − Ut)/ct. (5)

Note that Ut is the total payoff when the players are mixed. Lemma 4 implies that

Ut > 0 for some t, so we also have

Σt(Wt − Ut) < ΣtWt = 1. (6)

Suppose that the planner separates the players into T contests, so each contest

contains all the players of a particular type. In addition, suppose she assigns prizes

of total value Wt−Ut to the contests with t-type players and all the prizes except the

lowest are positive. Then, the total winnings of t-type players equals the total value

of their prizes, Wt−Ut. If the lowest prize is zero in every contest, Lemma 3 implies

that all players have zero payoffs. Similar to (5), the total expected performance

of t-type players is ((Wt − Ut) − 0)/ct = St, and the performance outcome is the

same as (S1, S2, ..., ST ). According to (6), some prize money, 1−Σt(Wt−Ut), is not

assigned to any contest. If the planner adds the extra money to the first prize in

a contest of t-type players, the total performance of t-type would increase. Hence,

the resulting performance outcome dominates (S1, S2, ..., ST ).

To complete the proof, we still need to ensure that the minimal performance

requirements are satisfied. Recall that in the equilibrium with mixed players, we

have E[sit ] ≥ rt for any type t. Denote i′t as the player with lowest expected

performance among the t-type players in the equilibrium with mixed players, so his

expected performance is

E[si′t ] ≥ rt. (7)

Therefore,

St ≥ ntE[si′t ]. (8)

According to Barut and Kovenock (1998), if all the players in a contest are

identical and all the prizes except the lowest are positive, the contest has a unique

15



Nash equilibrium in which the players have symmetric strategies. Since all t-type

players are grouped in the same contest, they have the same expected performance.

Thus each of them has expected performance S ′t/nt ≥ St/nt ≥ E[si′t ] ≥ rt, where the

first inequality comes from the dominance shown above, the second comes from (8),

and the last comes from (7). Hence, individual minimal performance requirements

are also satisfied.

Remark 1 According to the theorem, it is never optimal to assign only one player

to a contest or to have a contest containing all the players. In addition, even if the

planner only wants to maximize the performance of one type, it is still optimal to

separate the other players. This is because, if the players are separated, less prize

money is needed to ensure the minimal performance requirements are met by the

other players.

It is also worth mentioning that there is more than one way to separate the play-

ers. For instance, suppose there are two H-type players and four L-type players.

The planner can separate the players in two ways. She can have two contests with

all the H-type players in one and all the L-type players in the other. Alternatively,

she can have one contest with all the H-type players and two other identical con-

tests, each with two L-type players. Proposition 1 below implies that the optimal

performance outcome remains the same across the different ways of separating.

Now let us consider the optimal prize structure. As a result of Theorem 1, we

only need to find the optimal prizes for separated players. According to Lemma 3,

if the lowest prize in a contest becomes smaller, the total expected payoff in the

contest decreases, therefore the total expected performance increases because of (5).

Hence, the lowest prize should be zero in every contest, then all players should have

zero payoffs. Therefore, equation (5) implies that the total performance of t-type

players is Vt/ct, where Vt denotes the total value of prizes assigned to the contests

containing t-type players. Note that, if the players are separated, the distribution of

prize money within a contest has no effect on the total performance in the contest as
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long as all the prizes except the lowest remain positive.8 As a result, the planner’s

problem (1) becomes a linear programming problem

max
V1,..,VT≥0

ΣtαtVt/ct

s.t. ΣtVt = 1,

Vt/(ctnt) ≥ rt for all t.

If αt/ct < αt′/ct′ for some t′ 6= t, it is optimal to minimize Vt, so Vt = ctntrt is just

enough to maintain the minimal performance requirement. In addition, we also

need to ensure the minimal effort requirements are met. Recall that each player in

a contest of identical players exhibits the same expected performance. Therefore,

in order to ensure the minimal performance requirements are met, the per capita

prize should be at least ctrt in each contest containing t-type players. Based on

the analysis above, the proposition below characterizes the optimal prize structures

that solve the planner’s problem.

Proposition 1 A prize structure is optimal for separated players if and only if i)

all the prizes except the lowest are positive in each contest, ii) the total value of

prizes in all the contests of t-type players is Vt = ctntrt if αt/ct < αt′/ct′ for some

t′ 6= t, and iii) the total value of prizes in a contest containing kt t-type players is

at least ctktrt.

Remark 2 A single prize, as in an all-pay auction, is not optimal if a contest

contains more than two players. For instance, if there are three H-type players and

two L-type players, the only way to separate them is grouping all the H-type players

in one contest and both L-type players in another. Then, if we assign a single

prize in the contest with three H-type players, there exists an equilibrium in which

one player chooses zero performance level. Therefore, the minimal performance

requirement is violated.

8In different setups where the participants’ costs are private information, allocation of prizes
would affect the equilibrium performance. See, for example, Moldovanu et al. (2007) and Liu et
al. (2013).
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There could be more than one optimal prize structure, but they all result in the

same performance outcome. Moreover, because Lemma 3 applies to any equilibrium,

the optimal prize structures and the induced performance outcome remain the same

whether there are multiple equilibria or not.

So far we have demonstrated that for separating to be optimal, it should be

accompanied with associated optimal prize structures. The share of the budget

that is used to motivate the players of t-type is weakly increasing in the weight αt

or the minimal performance level rt of this type. If the planner cannot choose the

prizes freely, mixing could actually be better than separating. For example, if the

school cannot ensure enough scholarships or resources are allocated to the lower-

ability groups, the students in those groups could have academic achievements below

the minimal requirements. Then, it could be beneficial to mix the students with

different abilities.

5 Robustness

Section 3 and 4 consider the case in which the players of the same type have identical

marginal costs. This section relaxes the assumption and shows that our main result,

Theorem 1, is robust to small idiosyncratic shocks in the costs. More precisely,

suppose player it of t-type has a marginal cost ct + εit > 0, where εit represents

the idiosyncratic shock. Note that the game is of complete information, so the

shocks are commonly known by the players. If the shocks are small, t-type players’

marginal costs are close to ct.

Proposition 2 Suppose the cost differences across players of the same type are

small, that is, maxi,t |εit| is close to zero. For any weights and minimal require-

ments, the total weighted expected performance is maximized only if the players are

separated.

The proof of the proposition is in the Appendix. Roughly speaking, Lemma 3

and 4 still apply if the cost differences converge to zero, so Proposition 2 can be

proved in a similar manner to Theorem 1.
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The proposition implies that players with similar abilities should be grouped

together. It is worth mentioning that grouping players with similar abilities together

does not necessarily mean grouping players with higher abilities together. On one

hand, they could represent the same allocation of players. For instance, suppose

that there are four players with distinct marginal costs, where 0 < c1 < c2 < c3 < c4.

Fixing c1 and c4, if c3−c2 converges to c4−c1, player 2’s marginal cost converges to

1’s, and player 4’s converges to 3’s. Therefore, the proposition above implies that

the optimal allocation groups similar players together. That is, placing players 1

and 2 in a contest and players 3 and 4 in another, which in this particular case also

means the players with higher abilities are grouped together.

On the other hand, grouping players with higher abilities together does not

necessarily mean grouping similar players together. Then, grouping players with

higher abilities may not be optimal. Example 1 illustrates such a situation.

Example 1 Consider four players with marginal costs of c1 = 1, c2 = 10, c3 = 11,

and c4 = 20. The planner maximizes the total expected performance subject to the

same minimal performance requirement of r = 10−4 for all the players.

According to calculations in the Appendix, the maximum total expected per-

formance given allocation ({1, 2}, {3, 4}) is 0.05, while the maximum total ex-

pected performance level given allocation ({1, 4}, {2, 3}) is 0.08. The allocation

({1, 2}, {3, 4}) groups players with higher abilities together, and it seems to be a

natural candidate for optimal allocation of players, but it is not optimal. This is

because, though player 1 and 2 have lower marginal costs, the difference between

their costs is the smallest.

6 Conclusion

This paper studies how to group players of different abilities across all-pay contests

when the prize structure is endogenous. We demonstrate that separating the players

according to their abilities is superior to mixing them, and we also characterize the

associated optimal prize structures. It would be an interesting extension to consider
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the optimal grouping problem if players are all different. As in Example 1, the

optimal grouping would depend on the distribution of costs. Moreover, since each

contest inevitably has asymmetric players, it is very important to characterize the

equilibria in asymmetric contests with heterogeneous prizes, which to our knowledge

is still an open question. Similarly, extending the model to accommodate constraints

on the maximum number of contests or on the number of participants in each contest

would lead to the same challenge in equilibrium characterization.
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Appendix

The lemma below characterizes an important property of atoms in one’s equilibrium

strategy, and we use this lemma to prove Lemma 1.

Lemma 5 Suppose a player has an atom at performance level s in an equilibrium,

that is, he chooses s with a strictly positive probability. Then he loses with certainty

by choosing this performance level.

Proof. We first claim that, if two or more players have an atom at performance

level s in an equilibrium, all the players who have an atom at s lose with certainty.9

Let us prove it by contradiction. Suppose that two players, i and j, have an atom

at performance level s in an equilibrium, and suppose that player i wins a prize

with positive probability by choosing s. Since the tie is broken in such a way that

everyone involved wins with positive probability, player j also wins a prize with

positive probability by choosing s. In contrast, if player j increases his performance

slightly above s, his cost is almost the same but his expected winnings would have

a discontinuous increase. This is because he no longer needs to share any prize with

player i. This is a deviation for player j, which is a contradiction.

We prove Lemma 5 in two steps. First, suppose two players have an atom at

performance level s in the equilibrium, then the above claim implies that both of

them must lose with certainty by choosing s. Second, suppose only player i has

an atom at s, and suppose he wins a prize with positive probability. On the one

hand, if all other players have no best response in (s− ε, s) for some ε > 0, player

i would benefit from lowering the atom to s − ε. This is a contradiction. On the

9This claim is referred to as the Tie Lemma by Siegel (2009).
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other hand, suppose another player j has a sequence of best responses converging

to s from below. Compared to such a best response close to s, performance slightly

above s imposes an almost identical cost on player j, but the resulting expected

winnings would have a discontinuous increase because of player i’s atom at s. This is

also a contradiction. In sum, player i loses with certainty by choosing performance

level s, which completes the proof.

Proof of Lemma 1. Lemma 5 implies that every player loses in a pure strategy

equilibrium, which cannot be true. Hence, there exists no equilibrium in pure

strategies. Moreover, at most one player has an atom in an equilibrium, otherwise

Lemma 5 is violated because one of the players would win with positive probability

by choosing the atom performance level.

Now we show that there is an equilibrium in mixed strategies. Consider a

contest with players 1, 2, ..., n, and let v1 be the highest prize and c1 be the lowest

cost in the contest. Then, no player chooses the performance above v1/c1 because

it costs more than the highest prize. Let us consider a restricted action space

Πn
i=1[0, v1/c1]\{(s1, ..., sn)|si = sj for some i, j}, in which the performance levels

are distinct and between 0 and v1/c1. Players’ payoffs are bounded and continuous

in the restricted space, which is dense in Πn
i=1[0, v1/c1]. According to Simon and

Zame (1990, p. 864), there exists some tie-breaking rule, which may be performance

dependent, such that the contest with action space Πn
i=1[0, v1/c1] has an equilibrium

in mixed strategies. To complete the proof, it suffices to verify that the equilibrium

in the restricted contest remains an equilibrium in the original contest. We do this

in two steps.

First, a best response in the equilibrium above gives player i the same payoff in

the restricted and original contests if all others follow the strategies in the equilib-

rium. Recall that there is no atom at a positive performance level in the original

contest, and it is also true in the restricted contest. As a result, if a best response

of player i in the equilibrium is positive, no other players have an atom at the best

response, which means that the probability of a tie at the best response is zero.

Therefore, the best response gives player i the same payoff in both the restricted
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and original contests. If a best response of player i in the equilibrium is zero, the

player loses with certainty and gets zero payoff in both contests.

Second, no performance level gives player i a payoff in the original contest higher

than his payoff in the restricted contest. If the others do not have an atom at a

particular performance level, it would give player i the same payoff in both contests.

As a result, we only need to check the performance levels, at which player i does not

have an atom but others do. This is the performance level of 0. If another player

has an atom at 0, by choosing a performance level slightly above 0, player i could

get an discontinuous increase in his payoff compared to that at 0. As a result, a

performance level at 0 does not give player i a higher payoff in the original contest.

We now proceed to prove Proposition 2. First, we show that Lemma 3 and 4 still

hold if the cost differences within each type are small enough. After that, similar

to proving Theorem 1, we use these two lemmas to prove Proposition 2.

Proof of Proposition 2. Let us first show the counterpart of Lemma 3: the

players’ payoffs in a contest converge to the value of the lowest prize in any equi-

librium if maxi,t |εit| goes to zero. Similar to Lemma 3, the player with the highest

marginal cost, say player n, has a payoff that equals to the lowest prize. According

to Lemma 2, player n can ensure himself expected winnings no less than that of

player i’s at performance level s̄i, player i’s highest performance in the support of

his strategy. As a result, if players n and i’s costs converge towards each other,

player n’s payoff cannot be lower than i’s in the limit. Since no player’s equilibrium

can be lower than the lowest prize, the payoffs of player i and n must be the same

and equal to the lowest prize in the limit.

Let us now show the counterpart of Lemma 4: if the players in a contest have

different cost types and the prizes are not identical, at least one player’s payoff

is higher than the lowest prize in any equilibrium. Suppose players i and j have

different cost types, then their costs in the limit are also different: ci > cj, also

suppose that they have the same equilibrium payoff in the limit, that is, ui = uj.

According to Lemma 2, player j can ensure himself expected winnings no lower than
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that of player i’s at performance level s̄i. Therefore, player j can ensure himself a

payoff higher than i’s by choosing s̄i because j has a lower cost in the limit. This

is a contradiction.

Given the counterparts of Lemma 3 and 4, we can prove Proposition 2 in the

exact same way as we prove Theorem 1.

Calculations for Example 1. Suppose the allocation is ({1, 2}, {3, 4}). Then,

player 1 and 2 compete in a contest for a prize of v ∈ (0, 1), and players 3 and

4 compete in the other contest for a prize of 1 − v. The equilibrium payoffs are

u1 = v (1− c1/c2) for player 1 and u2 = 0 for player 2. The equilibrium strategies

are G1(s) = (u1 + c1s)/v and G2(s) = c2s/v. Hence, the expected performance of

the two players are

E[s1] =

∫ v/c2

0

sdG1(s) = v/(2c2),

E[s2] =

∫ v/c2

0

sdG2(s) = vc1/(2c
2
2).

Similarly, the expected performance for players 3 and 4 are E[s3] = (1− v) /(2c4)

and E[s4] = (1− v)c3/(2c
2
4).

Given the allocation ({1, 2}, {3, 4}), the planner chooses a prize structure to

maximize the total expected performance subject to the minimal performance re-

quirement. That is,

max
v∈(0,1)

4∑
i=1

E[si]

s.t. E[si] > r for i = 1, 2, 3, 4

Substituting the parameter values into the problem above, we can rewrite the prob-

lem as

max
v

11

200
v +

31

800
(1− v)

s.t. 0.02 ≤ v ≤ 1− 0.08/11
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Therefore, the optimal prizes are 1− 0.08/11 for the contest between players 1 and

2, and 0.08/11 for the contest between players 3 and 4. The resulting total expected

performance is 0.05.

Similarly, suppose that the allocation is ({1, 4}, {2, 3}), then the planner’s prob-

lem can be rewritten as

max
v

21

242
v +

21

800
(1− v)

s.t. 0.0121/5 ≤ v ≤ 0.92

Therefore, the optimal prizes are 0.92 for the contest between players 2 and 3, and

0.08 for the contest between players 1 and 4. The resulting total expected perfor-

mance is 0.08, which is higher than the total expected performance for allocation

({1, 2}, {3, 4}).
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