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Abstract

This paper develops a continuous-time principal-agent model and solve a dynamic debt contract
to endogenize �nancing constraints and studies its implications for �rm dynamics as in the discrete-
time model of Clementi and Hopen-hayn(2006). We develop a method to solve for the optimal
contract, given the incentive constraints, in a continuous-time setting, and study the properties
of the optimal dynamic debt contract, and relate them to the �rm growth rate and its volatility,
and survival probability. In agreement with the empirical evidence, we shows explicitly that the
�rm size is concave and increasing with the equity value, the growth rate and its volatility and the
survival probability decrease with the �rm size and age. Finally, the model is able to generate the
evolution of skewness in �rm size distribution documented by Cabral and Mata(2003).
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1 Introduction

Agency problems limit the extent of borrowing and consequently may be important determinants of

�rm dynamics. In this paper, we consider a dynamic contracting environment in which a risk-neutral

entrepreneur with limited endowment of wealth has the opportunity to invest in a project. At the

beginning of the project, the entrepreneur has a project that requires a �xed setup investment. Once

in operation, the project generates cumulative cash �ows that follow a Brownian motion with positive

drift, which follows a standard production function. While the probability distribution of the cash �ows

is publicly known, the entrepreneur may distort these cash �ows by taking a hidden action that leads

to a private bene�t for herself and a loss to the lender.Therefore, from the perspective of lender that

fund the project�s working capital, there is the concern that a low cash �ow realization may be a result

of agency problems (for example, the entrepreneur diverts realized cash �ows as her private bene�ts),

rather than the project�s fundamentals. To provide the entrepreneur with appropriate incentives, the

bank control the entrepreneur�s cash �ow right, and may also withdraw the �rm�s working capital and

terminate the project, providing a �xed liquidation value.

Using techniques introduced by annikov(2008) and DeMarzo and Sannikov(2006), we develop a

martingale approach to formulate the agent�s incentive compatibility constraint. We then characterize

the optimal contract through an ordinary di¤erential equation. This characterization, unlike that

using the discrete-time Bellman equation, allows for an analytic derivation of the impact of the model

parameters on the optimal contract, �rm dynamics, and well as investment sensitivity with respect to

cash �ows. Such kind of continuous-time setting o¤ers several advantages. First, it provides a much

cleaner characterization of the optimal contract through an ordinary di¤erential equation. Second, it

yields a explicit determination of �rm dynamics, allowing us to compute comparative statics of �rm

dynamics.

In the absence of asymmetric information, there exists an e¢ cient working capital investment, which

is advanced every period, such that the �rm neither grows nor exits. In contrast, with asymmetric

information we characterize the optimal contract contingent upon the equity value (i.e., the expected

discounted value of the cash �ows accruing to the entrepreneur). When the entrepreneur su¤ers from

bad lucks that the project gets continually negative shocks such that the equity value goes beyond a

low boundary, the bank ceases to invest the project and the �rm is liquidated. When he is lucky enough

that the project gets continually positive shocks such that the equity value reaches a upper threshold,

�nancial constraints cease to bind and the �rm attains its e¢ cient size, and the entrepreneur takes

a large proportion of the �rm�s cash �ow rights and gains a positive consumption. When the equity

value goes between, the bank takes the full proportion of the �rm�s cash �ow rights and under-invest

the project, and the entrepreneur delays her consumption. The transfer policy in the optimal dynamic
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contract is quite similar with that of the standard short-term debt. The standard short-term debt

contract speci�es a contingent transfer policy that the entrepreneur gains the residual claim right when

the project�s cash �ow is not less that the pre-speci�ed repayment, and otherwise the lender gains the

whole cash �ow rights.

The optimal contract determines the nontrivial di¤usion processes for �rm size (the working capital

investment policy), equity (the entrepreneur�s share of total �rm value), and debt (the lender�s share).

Production shocks a¤ect the �rm�s equity and debt values and �nancial structure, and thus have per-

sistent e¤ects on the �rm size and age, growth rate and volatility, survival probability, and investment

sensitivity with respect to �nancial constraint. The optimal dynamic contract consists of the invest-

ment level, transfer policy, and liquidation. The transfer policy rewards and punishes to discipline the

entrepreneur�s conduct. This explains why �rm size (the investment policy) and equity value decreases

with the production volatility.

Our paper contributes to an emerging literature on �nancial constraint and �rm growth. The

conventional wisdom known as Gibrat�s law asserts that �rm size and growth are independent and that

the �rm size distribution (FSD) is stable over time and approximately lognormal. This view has been

challenged by a series of recent papers (see Sutton(2001) and Lotti, Vivarelli and Santarelli(2004) for

recent surveys of the literature). The empirical regularities of �rm dynamics show that

� Size dependence: Conditional on age, the dynamics of �rms (growth, volatility of growth, job

creation, job destruction and exit) are negatively related to the size of �rms

� Age dependence: Conditional on size, the dynamics of �rms (growth, volatility of growth, job

creation, job destruction and exit) are negatively related to the age of �rms

More recently Cabral and Mata(2003) document two stylized facts about the FSD: the distribution

of young �rms is very skewed to the right (most of the mass is on small �rms); and the skewness tends

to diminish monotonically with �rm age (the distribution of older �rms is more symmetric than that

of young �rms). Next, the paper presents a simple theoretical model in which �nancial constraints

determine the observed FSD evolution, and provides supporting empirical evidence. Angelini and

Generale(2005), based on a sample containing survey-based measures of �nancial constraints for Italian

�rms, con�rms the negative link between �nancial constraints and �rm size.

These views have recently found some theoretical support. Bolton and Scharfstein(1990) con-

sider a two-period model with asymmetric information similar to ours, but without a choice of scale.

Gertler(1992) is a �rst move in this direction and studies the optimal contract between a lender and

a borrower in a three-period production economy with asymmetric information. Clementi and Hopen-

hayn(2006) extends Gertler�s to in�nite-period one and builds a clearly dynamic model, and matches
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most of the qualitative properties of �rm dynamics that have been recently documented. Due to the

calculation complexity of discrete model, they consider only two contingent state of outcome and the

lender takes random policy to terminate the project with a probability. In spite of its simpli�cation

the detailed implications are very di¢ cult to derive explicitly, they have to complement the analysis

of �rm dynamics with some numerical results. Our paper contributes to this research programme by

introducing a martingale approach to formulate the agent�s incentive compatibility constraint. We then

characterize the optimal contract through an ordinary di¤erential equation. This characterization, un-

like that using the discrete-time Bellman equation in Clementi and Hopenhayn(2006), allows for an

analytic derivation of the impact of the model parameters on the optimal contract, �rm dynamics,

and well as investment sensitivity with respect to cash �ows. While discrete-time models are adequate

conceptually, a continuous-time setting may prove to be simpler and more convenient analytically.

Cooley and Quadrini(2001) present a theoretical model in which �nancial frictions explain several

stylized facts about �rm growth and generate FSD skewness. Desai, Gompers and Lerner(2003) suggest

that �nancial constraints potentially induced by institutional factors, such as corruption and insu¢ cient

protection of property rights, have a negative impact on �rms�entry and growth and generate FSD

skewness, especially in developing countries.

A large body of literature, beginning with the distinguished work of Jovanovic(1982), rely on explain

these industry dynamics as arising from learning about the technology or from persistent shocks to

the technology. Examples of these models include Jovanovic(1982), Hopenhayn(1992), Hopenhayn and

Rogerson(1993), Campbell(1998) and Campbell and Fisher(2000), among others. These models capture

some of the empirical regularities mentioned above but they are unable to simultaneously account for

both the size dependence (once we control for the age of the �rm) and the age dependence (once we

control for the size of the �rm).

Our paper is part of a growing literature on dynamic optimal contracting models using recursive

techniques that began with Green(1987), Spear and Srivastava(1987), Phelan and Townsend(1991),

and Atkeson(1991) among others. As we mention above, this paper builds directly on the model of

Clementi and Hopenhayn(2006), using the methodology developed by Sannikov(2008) and DeMarzo and

Sannikov(2006). Other recent work that develops optimal dynamic agency models of the �rm includes

Albuquerque and Hopenhayn(2004), DeMarzo and Fishman(2004) and DeMarzo and Fishman(2007).

However with the exception of Clementi and Hopenhayn(2006), these papers do not share our focus on

�nancial constraint and �rm dynamics.

Our model belongs to a large body of dynamic contract models of moral hazard, pioneering with

the work of Radner(1985) and Rogerson(1985). Green(1987) and Spear and Srivastava(1987) develop

the recursive representation the in�nitely repeated principal-agent problem in discrete time. Spear
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and Srivastava(1987) introduce the agent�s continuation value as a state variable, which contains the

agent�s behavior history, transforming the dynamic moral hazard into a standard dynamic programming

problem. This methodology is taken by a large body of literatures, among them are Kocherlakota(1996),

Hopenhayn and Nicolini(1997), Clementi and Hopenhayn(2006). These models su¤er from complicated

calculations, and in spite of its extremely conceptual intuition the detailed implications are very di¢ cult

to derive explicitly, they have to complement the analysis of �rm dynamics with some numerical results.

Sannikov(2008) develops a continuous-time analogue of the repeated principal-agent model, and provides

a much cleaner characterization of the optimal contract through an ordinary di¤erential equation. Our

paper contributes to this body of literature by extend Sannikov(2008) methodology to debt contract

and �rm growth dynamics.

The remainder of this paper is organized as follows. The model is introduced in Section 2. In

Section 3 we characterize the main properties of the optimal contract. Section 4 discusses the �rm size

dynamics. In section 5 we consider the investment sensitivity. And �nally section 6 concludes.

2 The Model Setting

2.1 Technology and Preference

Time is continuous and in�nite. There is one borrower (an entrepreneur) and one lender (a bank). The

entrepreneur with initial net wealth A has a project which requires a �xed initial investment I0 > 0 to

set up a �rm, and a continuous-time investment �ow of working capital kt at time t to run the project.

Assume that A � I0 and therefore the entrepreneur su¤ers from �nancial constraint. For simplicity and

without loss of generality, we assume that A = I0 = 0. The entrepreneur has enough initial wealth to

invest in the �xed asset but have no working capital for the operation of the �rm. To run the project,

he requires a bank to �nance the investment �ow of working capital.

When the project is invested, it generates the continuous cash �ow with mean kt and volatility �kt ,

or

dYt = ktdt+ �ktdZt (1)

where Zt is standard Brownian motion. However, the cost function of the investment takes a quadratic

form1 , i.e.,

c(kt) =
�k2t
2

where � > 0. It is worthy noting that the cash �ow volatility increases with the amount of invest-

ment.(empirical reference). As we will see it below, the positive association between volatility and

investment is the necessary condition to guarantee the working of �nancial constraint.
1 In a previous version of the paper, we assmue the production technology takes a Cobb-Douglass form, while the cost

function is linear, which follows Clementi and Hopenhayn(2006) more closely. Though analytically cubersome, our main
results are derived under mild su¢ cient conditions.
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Assume both the borrower and the lender are risk-neutral, but the borrower is less patient than the

lender, that is, the borrower�s discount factor, 
, is greater than the lender�s discount factor, r.2

2.2 Agency Problem

We assume that the entrepreneur observes the cash �ow Yt , but the lender does not. In other words,

such outcome is the private information for entrepreneur. Because of the information asymmetry, the

entrepreneur can either conceal or divert the fund. We model the agency problem by allowing the agent

to divert the cash �ow for his own private bene�t, as in DeMarzo and Fishman(2007) and DeMarzo and

Sannikov(2006). Clementi and Hopenhayn(2006) considers an alternative source of moral hazard, that

the outcome of the project is observable to the principal while the use of the fund is not. DeMarzo,

Fishman, He and Wang(2008) and He(2008) consider shirking model, in which the shirking bene�t is

linear in the �rm size. However, they share the same analytic properties.

Assume there exists agency cost and hence ine¢ ciency when the entrepreneur diverts the �rm�s

funds: the entrepreneur can only consume part of cash �ows that he diverts from the �rm. The agent

receives a fraction � 2 [0; 1] of the cash �ows he diverts.

2.3 Long-term Contract

At time 0, a debt contract between the entrepreneur and the lender is speci�ed as follow.

De�nition 1 A debt contract, (� ; I; k), speci�es a termination time, � , the cash �ow right for the

entrepreneur It , and the credit to entrepreneur and the investment level (�rm size) kt, that is based

on the entrepreneur�s report history fŶs; 0 � s � tg. Formally, I and k is a Ŷ�measurable continuous

process, respectively, and � is a Ŷ�measurable stopping time.

We assume that the agent is essential to run the project. Once the project is terminated, the

entrepreneur receives a payo¤ Q � 0 from the outside option, and the lender receives the expected

liquidation payo¤ L � 0. Furthermore, We assume that at any time t the entrepreneur is liable for

payment to the lender only to the extent of current revenue. That is, the �rm is restricted at all time

to a nonnegative cash �ow or, dIt � 0 .

Both the entrepreneur and the lender are risk-neutral, take the same discount factor, and are able

to commit to a long-term contract. The lender has unlimited capital.

Under the debt contract (� ; I; k), up to time t � � , the entrepreneur�s instantaneous consumption

equals

dCt = �[dYt � dŶt] + dIt; dYt � dŶt � 0 (2)

2As DeMarzo and Sannikov(2006) and He(2008) make it clear, when 
 = r, the principal postpone the agent�s
consumption "forever", and the optimal contract fails to exist.
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When the project is terminated at time � , the entrepreneur receives a payo¤ Q � 0 from an outside

option. Hence the entrepreneur�s total expected payo¤ from the contract at date 0 is given by

V0(Ŷ ) = E[

Z �

0

e�
t(�[dYt � dŶt] + dIt) + e�
�Q] (3)

Similarly the lender�s time-t cash �ow equals

dŶt � dIt � c(kt)dt: (4)

When the prefect is terminated, the lender receives the expected liquidation payo¤ L � 0. Hence the

lender�s total expected pro�t at date 0 is

D0(Ŷ ) = E[

Z �

0

e�rt(dŶt � dIt � c(kt)dt) + e�r�L] (5)

From the point and view of capital structure, V0 is the equity value, whileD0 is the debt value.(further

discussion)

3 Optimal Dynamic Contract

3.1 First-best Contract

When there exists no information asymmetry, and hence the lender observes the project�s cash �ow at

any time t, the realized cash �ow can be written into the contract. Since both the entrepreneur and the

lender are risk neutral and share the same discount factor, there exists an optimal debt contract such

that the sum of both agents�expected payo¤ is maximized or

k� = argmaxk k � c(k) (6)

The optimal investment satis�es the �rst-order condition

c0(k�) = 1 (7)

since f(kt) is concave. Hence we have

k� =
1

�
(8)

and the �rst-best instantaneous pro�t is 1
2� .

3.2 Optimal Contract With Dynamic Moral Hazard

3.2.1 Borrower�s Continuation Value and Incentive Compatibility

We solve the optimal dynamic contract problem following the methodology a la Sannikov(2008). In

response to a debt contract (� ; I; k) , the entrepreneur chooses a feasible strategy that consists of his

consumption choice and the income report in order to maximize his expected payo¤. Below we formally

de�ne the feasible strategy of the entrepreneur.
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De�nition 2 Given a contract (� ; I; k) , a feasible strategy is a pair of processes (C; Ŷ ) adapted to

Y such that

1. Ŷt is continuous-time process, and Yt � Ŷt has bounded variation,

2. Ct is nondecreasing.

The entrepreneur�s strategy (C; Ŷ ) is incentive compatible if it maximizes his lifetime expected

utility in the class of all feasible strategies given a debt contract (� ; I; k) . As a result, we have the

following de�nition.

De�nition 3 Given a debt contract (� ; I; k) , the entrepreneur�s strategy (C; Ŷ ) is incentive compatible

if

1. the entrepreneur�s strategy (C; Ŷ ) is feasible;

2. the entrepreneur�s strategy (C; Ŷ )

E[

Z �

0

e�
tdCt + e
�
�Qtjzt] � E[

Z �

0

e�
tdC 0t + e
�
�Qjzt] (9)

for all the entrepreneur�s feasible strategies (C; Ŷ
0
) , given an contract (� ; I; k), where zt is the �-algebra

of information associated with the process.

Note that the entrepreneur�s utility from the continuation of the project should be at least as large as

the entrepreneur�s outside option, Q, which he can receive at any time when the project is terminated.

As the entrepreneur can always, for example, under-report and divert at rate rQ until a termination

time, any incentive compatible strategy would yield the entrepreneur utility of at least Q.

(Clementi and Hopenhayn(2006), this constraint may bind in a discrete-time setting because of a

limit to the amount the agent can steal per period.?? )

A debt contract is incentive compatible if the entrepreneur�s strategy (C; Ŷ ) is incentive compatible

given the contract (� ; I; k). Denote the incentive compatible contract as (� ; I; k; C; Ŷ ; Y ). The optimal

contracting problem is to �nd an incentive compatible contract (� ; I; k; C; Ŷ ; Y ) that maximizes the

lender�s pro�t subject to delivering the entrepreneur an required �ow of payo¤ rQ.

Now we show that it is su¢ cient to look for an optimal contract in which the agent chooses to

report cash �ows truthfully. To characterize the optimal contract recursively, we de�ne the borrower�s

continuation value at time t if he tells the truth.

De�nition 4 Given the history of reports at time t, fŶs; s � tg. The entrepreneur�s continuation

value Wt is de�ned as the total expected discounted value that he receives at time t, from transfers and

termination, if the entrepreneur takes the truth-telling strategy after time t:

Wt(Ŷ ) = E[

Z �

t

e�
(s�t)dIs + e
�
(��t)Qjzt] (10)
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De�nition 5 De�ne Vt to be the lender�s time-0 total expected value conditional on the his information

at time t, from transfers and termination utility, if he always tells the truth:

Vt = E[

Z �

0

e�
sdIs + e
�
�Qjzt] (11)

where zt is the information available to the entrepreneur at time t.

It is easy to see the process Vt is a square-integrable zt-martingale and can be written as

Vt =

Z t

0

e�
sdIs + e
�
tE[

Z �

t

e�
(s�t)dIs + e
�
(��t)Qjzt]

=

Z t

0

e�
sdIs + e
�
tWt(Y )

(12)

Using the famous Martingale Representation Theorem and Ito Lemma, we can written the process

Wt as an zt-measurable di¤usion process.

Lemma 1 There exists an zt-predictable process �t, 0 � t < � , such that

dWt(Ŷ ) = 
Wtdt� dIt + �t(Ŷt)(dŶt � ktdt) (13)

Proof. See Appendix.

The process �t(Ŷt) in formula (13) is the sensitivity of the continuation value with respect to the

report. That is, the marginal continuation value of the entrepreneur�s report. Note that � is the

entrepreneur�s marginal cost of report. The entrepreneur has incentives not to divert cash �ows if

he gets at least each reported dollar, that is, if �t � � . If this condition holds for all t, then the

entrepreneur�s payo¤ will always integrate to less than his continuation value if he deviates. If this

condition fails on a set of positive measure, the entrepreneur can obtain at least a little bit more than

his continuation value if he under-reports cash when �t < �. We summarize the conclusion as the

following proposition.

Proposition 1 The truth-telling strategy is incentive compatible if and only if �t � � for all t � T .

Proof. see appendix.

Since the entrepreneur can not save, he tells the truth whenever �t � � for all t � T . The linearity

of the incentive comparability condition simpli�es the dynamic programming approach to determine

the optimal contract for the principal to deliver the agent any value W . Here we discuss informally.

The proof of Proposition formalizes our discussion below.

3.2.2 Derive the Optimal Contract

Given the entrepreneur�s continuation valueW and the truth-telling strategy. Let D(W ) be the lender�s

highest expected payo¤ that can be obtained from an incentive compatible debt contract, providing the

entrepreneur with utility equal to a W .

8



We observe that transferring lump-sum dI from the lender to the entrepreneur with continuation

value W , moves a contract to that of the entrepreneur�s continuation value W � dI. The e¢ ciency

implies that

D(W ) � D(W � dI)� dI; (14)

which shows that the marginal cost of delivering the entrepreneur his continuation value can never

exceed the cost of an immediate transfer in terms of the lender�s utility. That is

D0(W ) � �1 (15)

De�ne W � as the lowest value W such that D0(W ) = �1. That is, W � = inf fW : D0(W ) = �1g. As

we prove in the Appendix, D(W ) is concave, hence it is optimal to pay the borrower as follows.

Proposition 2 When W �W �, dIt = 0; and when W > W �, dIt =W �W �

It is easy to see Proposition 2 intuitively. When the entrepreneur�s continuation value W is small,

the agency problem becomes serious, and the lender prefers to provide incentive by delaying the transfer

to the entrepreneur. When the entrepreneur�s continuation value W is large, the entrepreneur takes a

large proportion of the �rm�s cash �ow rights, and the agency problem becomes relatively mild. Hence

the incentive of exercising transfer dominates that of delaying.

It is worthy noting that the transfer policy is quite similar with that of the standard short-term

debt. The standard short-term debt contract speci�es a contingent transfer policy that the entrepreneur

gains the residual claim right when the project�s cash �ow is not less that the pre-speci�ed repayment,

and otherwise the lender gains the whole cash �ow rights. The long-term contract speci�es a similar

contingent transfer policy that the entrepreneur gains the residual claim right W � W � when his

continuation value is not less than a threshold W �. Otherwise, the lender takes all cash �ow rights.

When W 2 [Q;W �], the entrepreneur consumes nothing, and if he has some luck to perform well

in the future, his performance is valued in the continuation utility. If he is lucky enough that the

project gets continually positive shocks and the realizations of dZt are continually positive, and hence

his continuation value W �W � , he will gain consumption. If he su¤ers from bad luck that the project

gets continually negative shocks and the realizations of dZt are continually negative, and hence his

continuation value W < Q , the lender will never invest the project, and the project is terminated.

When W 2 [Q;W �] and the entrepreneur tells the truth, his continuation utility evolves according to

dWt = 
Wtdt+ �t�ktdZt: (16)

In this region, we need to characterize the optimal choice of process �(t), which determines the sensitivity

of the entrepreneur�s continuation value with respect to his report. Because at the optimum the lender
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should earn an instantaneous total return equal to the discount rate, r, we have the following Hamilton

highest total expected payo¤:

D(W ) = max
�t��; kt

E[dYt � c(kt)dt+
D(W (t+ dt))

1 + rdt
jzt] (17)

Using Ito lemma, equation (17) becomes

rD(W ) = max
���; k

[k � �k
2

2
+ 
WD0(W ) +

D00(W )

2
�2�2k2] (18)

We prove in the Appendix that D(W ) is strictly concave in the region [Q;W �], setting � = � for all

t � � is optimal.

The concavity of the objective function in k in the RHS of the Bellman equation also implies that

the optimal choice of k is given as a solution to

k̂ =
1

� � �2�2D00(W )
(19)

Substituting the �rst-order condition into the above HJB function, we have the following ODE

2(� � �2�2D00(W ))(rD(W )� 
WD0(W )) = 1;W 2 [Q;W �] (20)

Given the strictly concavity of D(W ) , 1=(� �D00(W )�2�2) < 1=�. Hence

k̂ < k� (21)

That is, when the entrepreneur�s continuation value is less than W � , the project is underinvested, and

hence the entrepreneur su¤ers the �nancial constraint.

When W > W �, D(W ) = D(W �) +W � �W , hence D00(W ) = 0. Meanwhile, the super contact

condition requires the second derivatives match at the boundary, that is, D00(W �) = 0. Substituting it

into equation (19) , we have

k̂ = k�: (22)

When the entrepreneur�s continuation value is no less than W �, the project is free from �nancial

constraint, and the investment attains the �rst-best level. We summerize the conclusion as the following

proposition.

Proposition 3 The optimal contract takes the following form: Wt evolves according to

dWt = 
Wtdt� dIt + �(dYt � ktdt) (23)

When Wt 2 [Q;W �], the investment is less than the socially optimal level, and dIt = 0; When W �W �,

the investment attains the socially optimal level, and dIt =W �W �. The principal�s expected payo¤ is

given by a concave function D(W ), satisfying (20) on the inteval [Q;W �], D0(W ) = �1 for W � W �

and boundary conditions D0(W �) = �1 and D00(W �) = 0:
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[Insert Figure 1 here]

From equation (19) the investment ine¢ ciency relates to �2, �2, and D00(W ). Consider the entrepre-

neur�s diversion e¢ ciency �. It measures the quality of outside investment protection. A large � means

the weak legislature and legal enforcement of the outside investor�s protection, such that the entrepre-

neur easily divert the project�s cash �ow as his private bene�t. Because of information asymmetry, the

truth-telling mechanism works costly such that � � �. If there exists no agency problem (� = 0), the

project investment attains the socially optimal level by letting � = � = 0 and the second RHS term in

equation (19) equals zero.

When the legal protection of outside investor is poor, the entrepreneur easily divert and conceal the

project�s cash �ow as his private bene�t. To protect her bene�t, the lender decreases the investment

to the project that performs relatively poor, even though the project should have been invested at the

socially optimal level. Hence � is also a measure of degree of �nancial constraint.

The concavity of plays a critical role in deriving Proposition 3. It is intuitive to see this in the

views of either riskness or incentiveness. From the point and view of riskness, the concavity of D(W ) in

[Q;W �] means the lender is induced as if she is relatively risk-averse, and hence invests less with respect

to that when she is risk-neutral.

Consider the intuition in the view of incentiveness. When the project performs continually well,

as a bonus the entrepreneur holds increasingly more the cash �ow right in the future (futures or op-

tions??)(note that the entrepreneur still holds zero of the current cash �ow right and consumes nothing),

such that the entrepreneur�s continuation valueW increases continually, and hence mitigates the agency

problem, which results in the less cash �ow rights to the lender in the future and hence the concavity

of D(W ) in [Q;W �] . The continual good performance of the project mitigates the agency problem

and increases the investment. When the entrepreneur�s continuation value is large enough, the �nancial

constraint does not work, and the investment attains the socially optimal level.

The entrepreneur prefers to investing more because of limited liability. The lender can use it as a

incentive mechanism. When the project performs continually well, as a bonus, the lender increases the

investment; and when the project performs continually poor, as a punishment, the lender decreases the

investment and extremely stops the project.

4 Firm Size Dynamics

This section considers some of the implications of the model for �rm dynamics. Following Clementi and

Hopenhayn(2006), de�ne the working capital kt as the �rm size.
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4.1 Capital Advancement Policy

Consider the relationship between the �rm size kt and the entrepreneur�s continuation valueWt. Solving

the derivative on both sides of equation (18) with respect to Wt and using the envelope theorem, we

�nd

(r � 
)D0(Wt)� 
D00(Wt)Wt =
D000(Wt)

2
�2�2k2t (24)

Combining the �rst-order condition (19) with ODE (20), we get the policy function:

kt = F (Wt) = 2(rD(Wt)� 
WtD
0(Wt)) =

1

� � �2�2D00(Wt)
(25)

Then,
@kt
@Wt

= F 0(Wt) = 2(r � 
)D0(Wt)� 2
D00(Wt)Wt (26)

D(Wt) is not necessarily decreasing on all its domain, as the optimal contract in general is not

renegotiation-proof. Hence (26) implies that when Wt is small, kt may decrease with Wt. In particular,

when �
D00(Wt)Wt < (
 � r)D0(Wt), F 0(Wt) < 0. However, in the "renegotiation-proof" region, i.e.,

D0(Wt) � 0, we have D000(Wt) > 0, thus F 0(Wt) > 0. As D0(Wt) decreases with Wt, if D0(W1) � 0,

then for any W > W1, F 0(W ) > 0:

De�nition 6 cW is the starting point of the "renegotiation-proof" region, i.e., D0(cW ) = 0:
Proposition 4 If �
D00(Q)Q < (
 � r)D0(Q), then there exists some fW , kt decreases with Wt when

Wt � fW ; If Wt > cW , kt increases with Wt:

This is consistent with Clementi and Hopenhayn(2006)�s result. But the intuition may be di¤erent.

We also infer from (26) when r equals 
, the downside e¤ect is gone and the decreasing region

vanishes. But again, in that case, the optimal contract may not exist. However, when r is close to 
,

numerical example shows that kt increases with Wt.

[Insert Figure 2 here]

4.2 Size Dependence

The empirical regularities of �rm dynamics show that, conditional on age, the dynamics of �rms (growth,

volatility of growth, job creation, job destruction and exit) are negatively related to the size of �rms. 3

These results agree with empirical studies of Evans(1987) and Hall(1987), among others.

Combining the �rst-order condition (19) with ODE (20), we get the policy function:

kt = F (Wt) = 2(rD(Wt)� 
WtD
0(Wt)) =

1

� � �2�2D00(Wt)
(27)

3However, in our model,Wt is the only dimension of heterogeneity, thus we can only generate unconditional dependence
of �rm dynamics on size and age.
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Using Ito�s lemma, we �nd the di¤usion function of kt:

dkt = F
0(Wt)dWt +

F 00(Wt)

2
(dWt)

2

= (
WtF
0(Wt) +

F 00(Wt)

2
�2�2k2t )dt+ ��ktF

0(Wt)dZt

= (r � 2
)�2�2k2tD00(Wt)dt+ 2��kt((r � 
)D0(Wt)� 
WtD
00(Wt))dZt

(28)

where the third equality comes from equation (24). Hence,

dkt
kt

= (r � 2
)�2�2ktD00(Wt)dt+ 2��((r � 
)D0(Wt)� 
WtD
00(Wt))dZt (29)

= (r � 2
)(�kt � 1)dt+ 2��((r � 
)D0(Wt)� 
WtD
00(Wt))dZt

= �(kt;Wt)dt+ �(kt;Wt)dZt

where the second equality comes from the �rst-order condition (19), and �(kt;Wt) is the expectation

of �rm growth rate, and �(kt;Wt) is the volatility of growth rate.

It is easy to show that
@�(k;W )

@k
= (r � 2
)� < 0 (30)

Proposition 5 The growth rate decreases with the �rm size.

However, it�s quite di¢ cult to sign @�(k;W )=@k.

@�(k;W )

@k
= 2��((r � 2
)D00(W )� 
WD000(W ))

@W

@k
(31)

= 2��((r � 2
)D00(W )� 
WD000(W ))=F 0(W )

WhenW is small, it might be the case that F 0(W ) < 0: Then we know from (25) D000(W ) < 0, hence

@�(k;W )=@k < 0:On the other side, when W is close to W �, we also get @�(k;W )=@k < 0: In the limit

W =W �, we have D00(W �) = 0 and D0(W �) = �1: From (25) and (26), D000(W �) > 0 and F 0(W �) > 0,

hence @�(k;W �)=@k < 0:However, over the region [Q;W �], we are not able to prove explicitly that the

volatility of growth decreases with the �rm size. Therefore, we complement our analysis with numerical

exercise.

[Insert Figure 3 here]

Finally, in the continuous-time model, public randomization is unnecessary�when W� = Q, the

project is liquidated. Hence, the conditional probability of survival Pr(� > etjWt) is increasing in the

agent�s continuation payo¤Wt. Therefore

Proposition 6 When Wt > cW , the conditional hazard rate for exit, Pr(� > etjkt), decreases with �rm
size kt:

However, di¤erent from the discrete-time model, even ifW reachesW �, the possibility of liquidation,

though small, always exists, as the potential loss is unbounded in the continuous-time model.
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4.3 Age Dependence

Consider the implications of �rm age for �rm dynamics. Empirical results also shows, conditional on

size, the dynamics of �rms (growth, volatility of growth, job creation, job destruction and exit) are

negatively related to the age of �rms.

When D0(W �) = �1 2 [Q;W �], we know from (28)

E(dkt) = (r � 2
)�2�2k2tD00(Wt)dt > 0

Hence, �rm size increases on average as the �rm ages. Then it is obvious that similar results hold for

�rm�s age, on average. Formal derivation is di¢ cult, but numerical results are in line with the empirical

regularities.

Following Clementi and Hopenhayn(2006), we use a �nite, large number of �rms in the numerical

exercise, assuming all �rms start at the same initial value W0, which is close to agent�s outside option

Q. Time increment is discrete and small, the step h = 0:01:At each time, when the �rms�shocks are

revealed, Wt evolves according to (23) and kt according to (28). Then, exit hazard rate, average size,

average growth rate and volatility of growth are obtained.4

[Insert Figure 4 here]

As mentioned above, the hazard rate may not necessarily converge to zero, as the potential loss is

unbounded here.

4.4 Evolution of Firm Size Distribution

Conventional wisdom con�rms that the �rm size distribution is stable and approximately lognormal.

However, Cabral and Mata(2003) document two stylized facts about the FSD, using a data set of

Portuguese manufacturing �rms: the distribution of young �rms is very skewed to the right, that is,

most of the mass is on small �rms; and the skewness tends to diminish monotonically with �rm age, that

is, the distribution of older �rms is more symmetric than that of young �rms. Then they use a simple

two-period competitive model, to demonstrate that it is �nancial constraint, rather than selection, could

well account for the evolution.

However, the theoretical model of Cabral and Mata(2003) is a little too simple and stylized. Tech-

nically speaking, there are no optimization problems for the �rms to solve, and more importantly,

�nancial constraints are exogenous. Therefore, it is necessary to introduce a more sophisticated dy-

namic model. Fortunately, our complex model is able to replicate the evolution of �rm size distribution

that is observed in Cabral and Mata(2003).

4The time series are averaged in the cross section, among the surviving �rms, and then averaged over 50 steps, i.e.
T = 0:5.
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[Insert Figure 5 here]

We use a sample of 200000 �rms, starting with the same initial value (for the borrower), W0,5 , and

simulate the evolution of their size according to the optimal debt contract.

5 Comparative Static Analysis

6 Summary and Conclusion

7 Appendix

7.1 Entrepreneur�s Incentive Compatibility Condition

Proof of Lemma 1. Wt(Ŷ ) is determined by the entrepreneur�s reported cash �ow fŶs; s � tg. One

possibility is that fŶs; s � tg equals the realized cash �ow. That is, the entrepreneur tells the truth. In

this case, we have

Vt =

Z t

0

e�
sdIs + e
�
tWt(Ŷ ) (32)

It can be written as a stochastic di¤erential equation

dVt = e
�
tdIs + e

�
tdWt(Ŷ )� 
e�
tWt(Ŷ )dt (33)

Vt is a martingale, hence by the martingale representation theorem, there exists a �t(Ŷt) > 0 such

that

dVt = e
�
t�t(Ŷt)(dŶt � kt)dt (34)

We complete proof by combining equation (33) and (34).

Before the proof of Proposition 1, we de�ne an auxiliary gain process for the borrower

De�nition 7 When the entrepreneur reports cash �ows equal fŶs; s � tg before time t, and from then

on she tells the truth, her lifetime total revenue expected at time t is

V̂t =

Z t

0

e�
sdIs(Ŷs) + �[dYt � dŶt]) + e�
tWt(Ŷ ) (35)

Proof of Proposition 1. Writing equation (35) as a stochastic di¤erential equation, using Ito

Lemma, and combining equation (13), we have

dV̂t = e
�
t((dIs(Ŷs) + �[dYt � dŶt]) + dWt(Ŷ )� 
Wt(Ŷ )dt)

= e�
t((dIs(Ŷs) + �[dYt � dŶt])� 
Wt(Ŷ )dt+ 
Wt(Ŷ )dt� dIs(Ŷs) + �t(Ŷt)(dŶt � ktdt))

= �e�
t((�t(Ŷt)� �)(dYt � dŶt) + �t(Ŷt)�ktdZt)

(36)

5We have also started with a uniform distribution of the value, and the result is similar.
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As we have assumed that the entrepreneur has only the incentive to divert �rm�s cash �ows, dYt �

dŶt � 0 supermartingale if �t � �. Hence we have

V0(Y ) = V̂0 � E[V̂1jz0] = V0(Ŷ ) (37)

The expected revenue if she tells the truth is not less than that if she takes any strategy other than

truth-telling. That is the truth-telling strategy is incentive compatible. Otherwise, V̂t is a submartingale

if �t < �. Then there exists a time t such that

E[V̂tjz0] > V̂0 = V0(Y ) (38)

Even if there exists such a strategy that the entrepreneur reports fŶs : s � tg before t and tells the

truth then after, the expected revenue if she take such a strategy is greater than that if she takes the

truth-telling strategy at any time. In this case, the truth-telling strategy is incentive incompatible.

7.2 Concavity of the Optimal Contract

Evaluating (24) at the upper-boundary W �, and using D0(W �) = �1, D00(W �) = 0, and k = k�, we get

D000(W )

2
�2�2k�2 = 
 � r > 0

therefore there exists some �, for W 2 (W � � �;W �), D00(W ) < 0.

Suppose that there exists some fW � W � � � such that D00(fW ) = 0. Without loss of generality,

assume that fW = supfW 2 [Q;W �] : D00(fW ) = 0g. Thus, D00(fW + �=2) < 0 and D000(fW ) < 0. Then
we know from equation (24) that D0(fW ) > 0.
Evaluating equation (20) at fW , we have

2(� � �2�2D00(fW ))(rD(fW )� 
WD0(fW )) = 2�(rD(fW )� 
WD0(fW )) = 1
hence

rD(fW ) = 1

2�
+ 
WD0(fW ) > 1

2�

which is impossible because 1
2� is the �rst best instantaneous pro�t. Therefore D(W ) is strictly concave

over [Q;W �].

7.3 Veri�cation of the Optimal Contract

Consider any incentive-compatible contract. For any t � � , de�ne the auxiliary gain process as

Gt =

Z t

0

e�rs(dYs � dIs � c(ks)ds) + e�rtD(Wt)
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Under incentive-compatible condition, Wt evolves according to (13). Then, from Ito�s lemma,

ersdGt = (kt � c(kt) + 
WD0(Wt) +
D00(Wt)

2
�2�2k2t )dt�

(1 +D0(Wt))dIt + (1 + �D
0(Wt))�ktdZt

We will prove that the drift of Gt is non-positive. For the �rst piece, the �rst-order condition

(19) gives the optimal investment policy; because of the concavity of D(W ), � = � is optimal under

incentive-compatible condition. Then from (18), the �rst piece is 0, while other incentive-compatible

contracts will make it nonpositive.

For the second piece, recall that D0(W ) � �1, hence �(1 + D0(Wt))dIt � 0. However, under the

optimal contract, dIt = 0 whenD0(Wt) > �1, and dIt > 0 whenD0(Wt) = �1, thus (1+D0(Wt))dIt = 0.

Therefore, under any incentive-compatible contract, the drift of Gt is non-positive, and is zero under

the optimal contract. It�s obvious that (1+�D0(Wt))�kt is bounded, thus Gt is a supermartingale, and

a martingale under the optimal contract until time � .

Then, for all t <1, the principal�s payo¤ for an arbitrary incentive compatible contract is

E[G� ]

= E[Gt^� + 1t�� (

Z �

t

e�rs(dYs � dIs � c(ks)ds) + e�r�L� e�rtD(Wt))]

= E[Gt^� ] + e
�rtE[1t�� (Et[

Z �

t

e�r(s�t)(dYs � dIs � c(ks)ds) + e�r(��t)L]�D(Wt))]

� G0 + e
�rt 1

2r�

where the �rst term of the inequality comes from the supermartingale property of Gt^� , and the second

term comes from the fact that 1
2r� is the �rst-best pro�t of the principal if he owns the project solely

without agency problem. Therefore, letting t!1, E[G� ] � G0.

Finally, E[G� ] = G0 under the optimal contract as then Gt is a martingale until time � .

7.4 Comparative Static Analysis

The generalized Feynman-Kac formula, i.e., Lemma 4 in DeMarzo and Sannikov(2006), holds in the

present setting.

Lemma 2 Suppose Wt evolves according to

dWt = 
Wtdt� dIt + ��ktdZ (39)

until time � , when Wt reaches Q, where It is a nondreasing process that re�ects Wt at W �: Let b be a

real number and g : [Q;W �]! R be a bounded function. Then the same function G : [Q;W �]! R both

solves

rG(W ) = g(W ) + 
WG0(W ) +
1

2
�2�2k2G00(W )
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with boundary conditions G(Q) = L and G0(W �) = �b, and satis�es

G(W0) = E[

Z �

0

e�rtg(Wt)dt� b
Z �

0

e�
tdIt + e
�r�L]

The proof is just similar to DeMarzo and Sannikov(2006).
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Figure 1: Principal�s Value Function D(W ):The solid line is principal�s value function D(W ):The
dotted line is rD(W ) + 
W = 1=2�:The dash-dotted line is the �rst-best line, D(W ) +W = 1=2r�:The
parameters are r = 0:04, 
 = 0:042, � = 2, � = 0:8, � = 1:2, Q = 0:5 and L = 3. The upper endogenous
boundary W � = 4:88:
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Figure 2: Firm Size k(W ):The solid line is the second-best �rm size k(W ):The dashed line is the
�rst-best �rm size, 1=�: The parameters are r = 0:04, 
 = 0:042, � = 2, � = 0:8, � = 1:2, Q = 0:5 and
L = 3. The upper endogenous boundary W � = 4:88:
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Figure 3: Expected Growth Rate and Volatility of Growth Rate. The top panel shows the
linear and decreasing relationship between the expected growth rate, �(k;W ), and the �rm size, k. The
bottom panel shows the monotonically decreasing relationship between the volatility of growth rate,
�(k;W ), and the �rm size, k. The parameters are r = 0:04, 
 = 0:042, � = 2, � = 0:8, � = 1:2, Q = 0:5
and L = 3.
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Figure 4: Age Dependence.
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