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Abstract

We explore the inductively derived views obtained by players with partial tem-

poral (short-term) memories. A player derives his personal view of the objective

game situation from his accumulated (long-term) memories, and then uses it for

decision making. A salient feature that distinguishes this paper from others on

inductive game theory is partiality of a memory function of a player. This creates

a multiplicity of possibly derived views. Although this is a difficulty for a player in

various senses, it is an essential problem of induction. Faced with multiple possible

views, a player may try to resolve this using further experiences. The two-way

interaction between behavior and personal views is another distinguishing feature

of the present paper.
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1. Introduction

1.1. Backgrounds

Game theory and economics are experiential sciences about individual decisions and

behavior in social contexts. However, these disciplines have by-passed the experiential

side of the beliefs/knowledge of a player by taking them for granted. As a result, these
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Figure 1.1: From Experimatations to Behavioral Uses

disciplines are silent about the questions of where basic beliefs come from and how they

emerge and change with time1. Kaneko-Matsui [12] found this issue and touched it

in the context of discrimination and prejudices. Anticipating vast developments, they

called the resulting theory inductive game theory.

When we dig deeper, many different and untouched aspects are revealed with great

potential for further explorations. Kaneko-Kline [9] synthesized these aspects into a

skeleton called a basic scenario. The basic scenario moves from experimentations to the

inductive derivations of personal views, to behavioral uses and further experimentations,

and begins the cycle again, as depicted in Fig.1.1. The synthesis reveals a clear-cut

skeleton, while sacrificing a lot of details. Kaneko-Kline [8], [10] and Akiyama-Ishikawa-

Kaneko-Kline [1] focussed on those details in different parts of the scenario.

In this paper, we continue our exploration from the basic scenario, but now we deal

with the case of partial short-term memories and explore reciprocal effects between

memories, views, and behavior. We start with the assumption that a player has a weak

memory ability, and then define a weakened form of an inductively derived personal

view. By doing so, we are able to treat more substantive methods of induction than

what we captured in our previous works2.

1 In the game theory literature, various approaches appear to be related to ours, e.g., the repeated

game approach, the evolutionary game theory approach and behavioral economics. In ex ante game

theory, behavior results from sophisticated decision-making based on a granted view of the game itself.

The repeated game approach (cf. Hart [5]) effectively follows this idea, though the interpretation

associated with it may often differ. In evolutionary game theory (cf., Weibull [19]) and behavioral

economics (cf. Camerer, [3]), behavior is described by a specified (stochastic or non-stochastic) process

within the game itself but without players thinking about the game, and limit behavior is typically

analyzed. None of these approaches deals with the origin/emergence of basic beliefs/knowledge.
2 Induction here is closer to the induction by Bacon [2] than that of Hume [6] based on similarity.

Also, biology has a similar aspect of induction. A book review (Science 317, 17, Sept.2007) by A.
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With a broader notion of induction, we meet a multiplicity of personal views. We

give some uniqueness result, but this should be regarded just as a reference point. In the

uniqueness case, the inductive method can be summarized as a mechanical algorithm.

In the multiplicity case, we find that a variety of inductive methods may be used with

different resulting views. This variety may reflect individual differences in cognitive

abilities and propensities. Multiplicity rather than uniqueness has a greater potential

to explicate the multitude of different and conflicting views observed in society.

As in Kaneko-Kline [9], this paper covers a long scenario, though it discusses more

details in each step. It would still be inappropriate to only focus on a single theorem

in isolation. The contents with theorems need to be taken collectively in order to grasp

the full import. For the reader’s sake, a summary of important features and results will

be given in Sections 1.3 and 9.

1.2. Developing Inductive Game Theory

When a game theorist hears about a development of a new theory, he will likely ask what

kind of equilibrium/solution will be proposed and/or justified. Our questions do not take

such forms, since we do not aim to explore foundations of the extant equilibrium and/or

solution concepts. Our primary focus is on the emergence of a player’s beliefs/knowledge

in a social context, its behavioral consequences, and their reciprocal effects.

The change in focus forces us to rethink or modify even very basic notions such

as “information” in game theory. In the standard formulation of an extensive game

of von Neumann-Morgenstern [20] and Kuhn [13], information is expressed as a set

of possibilities in the form of an “information set”. However, at a more basic level,

information may be described as a collection of facts or data expressed symbolically.

We take the interpretation that information is transmitted and received in symbolic

pieces. These pieces and the stored memories of them become the building blocks for

the beliefs/knowledge of a player.

Treating information as pieces fits nicely into the context of inductive game theory:

Players experience some parts of the game as they play it, and each may perceive and

interpret those pieces of information in his own way. To describe individual differences

in perception and storing of information, we introduce a memory function for a player.

This additional structure allows us to distinguish between the information to be received

in a play and his memories of them. He uses the latter to form his beliefs/knowledge.

For the formation of a player’s view based on his memories, we found in Kaneko-

C. Love on Hall [4] describes it as an analogy to a jigsaw puzzle: “The completion of a jigsaw puzzle

brings tremendous satisfaction; however, a few missing pieces lead to considerable frustration. Having

the intended picture of a puzzle on the container contributes to the satisfaction (or the frustration).

How do you know if you have all the pieces? ... Such is the lot of biologists attempting to explain key

evolutionary transitions in the history of life.”
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Figure 1.2: Various Social Situations

Kline [9] that the standard notion of an extensive game needed to be weakened. Since

an extensive game consists of hypothetical nodes and branches, it becomes cumbersome

for subjective personal views and their derivations. To avoid this, Kaneko-Kline [10]

developed the theory of “information protocols”, based on information pieces and actions

as primitives. It describes more directly a target situation than the theory of extensive

games, in that it skips hypothetical nodes and branches. It also takes a simple axiomatic

form and can easily distinguish between the objective situation and subjective view. In

comparisons of possible views, an advantage of the theory of information protocols is

manifested, which will briefly be mentioned in Section 5.1.

In this paper, information protocols are adopted to express target social situations

as well as subjective personal views. The entire social system is described in Fig.1.2,

where various partial social situations are entangled. We are interested in one particular

target situation such as (Πm) which consists of an information protocol Π together
with a profile of memory functions m = (m

1 m

). Playing this situation from time

to time, a player accumulates experiences, and then constructs his personal view from

them. This subjective view is also described by an information protocol.

A memory function m
 for player  is a structure additional to an information pro-

tocol Π. In the standard literature of game theory, information sets have both roles of
information transmission and individual memory. For inductive game theory, we need

to separate memories from information transmission. Information pieces play the role of

information transmission, and a memory function describes individual local (short-term)

memory. This separation will be discussed in Section 3.

A remark related to this separation is on Kuhn’s [13] “perfect-recall” condition on

information sets. In our context, this can be reformulated as a condition on information

pieces and individual histories, which we do not interpret as expressing the memory

ability of a player. We call it the distinguishability condition, which is shown in Section
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6 to be a sufficient condition for the existence of a unique smallest view.

1.3. The Steps of this Paper and Some Results

Since this paper has various steps, here we give a small summary of them. In Section 9,

the contents and results obtained in this paper will be summarized along these steps.

Step 1 : In Section 3, we will give the definitions of an information protocol and memory

functions for players. A salient point here is that an individual memory function is

allowed to be partial and has a memory module as a basic unit of memory. That is,

his short-term (local) memory is subject to forgetfulness. In particular, the memory

module of recall-1 proves to be of importance.

Step 2 : The transition process from short-term memories to long-term memories was

explained in Kaneko-Kline [9] and more fully in Akiyama et al. [1]. Here, the process is

only briefly and informally explained in Section 2. Formally, we will take the resulting

domain of accumulations of experiences for granted.

Step 3 : We will give a generalized definition of an i.d.view, which allows general existence

of an i.d.view. However, there are an infinite number of i.d.views. We will focus on

minimal/smallest i.d.views. Minimality avoids large redundant views, but there may

be still multiple minimal views. When the memory function m
 is subject to partiality,

minimal views may not capture essential structures, since they may be too small.

Step 4 : Under Kuhn’s distinguishability condition, we show the unique smallest view,

which will be discussed in Section 6.

Step 5 : As the experienced domain is increased with time, a personal view is evolving,

i.e., for some time, it is getting larger but for other time, it gets stuck to a fixed one

even if he has more experiences. This will be exemplified with Mike’s bike in Sections

2 and 7.

Step 6 : The last step is to check an i.d.view with new experiences in the objective

situation. He may reach a certain view and it becomes stable in the sense that he does

not notice any incoherence between his view and his experiences. However, this takes a

long time or he fails to reach it. In Section 8, we consider some difficulties for a player’s

payoff maximization.

2. Mike’s Bike Commuting (1)

One important step of inductive game theory is the transition from a short-term mem-

ory to a long-term memory and an accumulation of long-term memories. This step is

elucidated in Kaneko-Kline [9] and Akiyama et al. [1]. In this paper, we skip the transi-

tion step but adopt certain concepts derived from it such as a domain of accumulation.

In this section, we use a variant of “Mike’s Bike Commuting” of [1] to illustrate the
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Figure 2.1: Mike’s Bike Commuting

transition step. This example will be discussed once more in Section 7.

Mike’s Bike Commuting: Mike moved to the new town and started commuting

from his apartment to his office by bike. The town has the lattice structure depicted in

Fig.2.1.A. At each lattice point, he receives an information piece,      

  , or . He has two possible actions “” and “” at    and  . At

 and  , he must choose , and at  and , he must choose .

Mike regularly takes the route indicated by the bold arrows, directly north from

 to  and directly east to , which his colleague suggested to him. Only

occasionally, he deviates to some other behavior and finds some other route. When he

deviates from to some new lattice point, like the south  in Fig.2.1.B, he then follows

his default behavior  when it is available3.

In the very beginning, he commutes through the regular route, which means that

the domain of accumulation consists of paths connecting the lattice points within the

regular route only. After some time, he might try a deviation from the lower  by

taking  there and then following his default behavior up to  In this case, the domain

of accumulation consists of the lattice points in the dotted line in addition to those in

the bold line in Fig.2.1.B. The deviation to  at the southwest  needs a higher order

trial: One deviation to  at the south  and the other deviation to  at that  are

required. It is our contention that it takes more time to experience and to learn the

results of higher order deviations.

The lattice picture is an accurate summary of the town. The player, on the other

hand, may not have access to such a description. Rather, he may receive only the

information pieces attached to each lattice point he experiences with the action taken

there. At each lattice point he reaches, he receives an information piece and a short-

term (local) memory occurs in his mind. One possible form of this memory is to recall

3 It is assumed in Akiyama et al. [1] that Mike is also given a small map of the town. Here, we do not

make this assumption; instead, we ask what map(s) Mike constructs from his partial local memories.
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only the current and last piece received with the last action taken there. For example

at the southwest if he comes from the south  his local memory is just h()i.
This is a basic memory module, which we call a memory module of recall-1. It plays a
fundamental role in this paper.

At each lattice point in the domain of accumulation, the local (short-term) memory is

experienced several times and then may be changed to a long-term memory. Hence, the

set of accumulated long-term memories, which we will call a memory kit, is expressed as

the set of such local memories over the domain of accumulation. The formal definitions

of these concepts will be given in Section 3.3.

Now, Mike’s problem of induction is to combine those small modules to one picture.

For example, we ask whether or not he can recover the objective picture of Fig.2.1.A

from his accumulated memories. We will give some answers in Section 7.

3. Information Protocols, Memory, Views, and Behavior

In Section 3.1, we describe information protocols and the axioms for them introduced

in Kaneko-Kline [10]. Section 3.2 introduces the concept of a memory function for a

player, which is the interface from the objective world to his mind. Then, we define an

objective description (Πm) and a personal view (Πm) of player . In Section 3.3,
we give a definition of a behavior pattern (strategy configuration) for the players, and

also describe a domain of accumulation for memories and a memory kit.

3.1. Information Protocols and Axioms

The concept of an information protocol deals with information pieces and actions as

primitive concepts, and describes connections between histories to new information

pieces and actions. An information protocol is given as a quintuple Π = (≺
 () ()∈∗) where

IP1:  is a finite nonempty set of information pieces;

IP2:  is a finite nonempty set of actions;

IP3: ≺ is a causality relation; formally, it is a finite nonempty subset of S∞=0(( ×
) × ) where4 every  ∈ and every  ∈  occur in some sequence in ≺.
The set (×)0× is stipulated to be A sequence in ≺ is called a feasible sequence.
We say that  ∈  is a decision piece iff  occurs in [(1 1)  ( )] for some
feasible sequence h(1 1)  ( ) +1i in ≺. We denote the set of all decision

4 In [10], we treated this additional part (no superfluous pieces and actions).as a separate condition

since redundancy has some implications for targeted comparisons between information protocols and

extensive games. Here, it is easier to assume the condition.
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pieces by and define =−, where each piece in is called an endpiece.

Using those notions, we describe the fourth and fifth components of a protocol.

IP4 (player assignment):  = {1  } is a finite set of players, and  :  → 2 is

the player assignment, where |()| = 1 for all  ∈ and () =  for all  ∈;

IP5 (payoff assignment):  : →  for all  ∈ ∗ where ∗ ⊆  .

An information protocol starts with tangible elements in  and  listed in IP1 and

IP2. Each  ∈  may be interpreted as a pure symbolic expression like a gesture,

a sentence in an ordinary language, or a formula in the sense of mathematical logic.

In Mike’s bike commuting of Fig.2.1.A,  = { } and
 = { } The set ≺ given in IP3 describes the feasible sequences of these elements pos-
sibly occurring in the plays of the game. A feasible sequence h(1 1)  ( ) i
is interpreted as meaning that in one occurrence of the protocol Π a player first received
piece 1 and took action 1 then sometime later another player received 2 and took

action 2 so on, and now, a player receives . It is not yet assumed that this sequence

is an exhaustive history up to . An exhaustive history will be defined presently.

We sometimes write [(1 1)  ( )] ≺  for h(1 1)  ( ) i ∈ ≺ 

We use hi to denote a generic element of S∞=0(( × ) ×  ). The set ≺ is

the union of subsets of ( × )0 × =  , ( × )1 × , ( × )2 × ,... We

are interested only in finite information protocols, i.e.,  and ≺ are all finite sets.
Throughout the paper, we assume  ∩ = ∅ to avoid unnecessary complications.

An information protocol is completed by adding the player assignment and the payoff

assignment. The player assignment  in IP4 assigns a single player to each decision piece,

and the set of all players  to each endpiece. In IP5, the payoff function  is specified

for each player  in the set ∗ ⊆  . We allow ∗ to differ from  to describe a personal

view where only some players’ payoffs are known to the player. In the present paper,

we consider the case of either ∗ =  or ∗ = {}
We assume for simplicity that each piece  ∈ contains the following information,

which player  should be able to read by looking at :

M1: a full set  of available actions at  if  is a decision piece;

M2: the value () of the player assignment  if  is a decision piece;

M3: his own payoff () (as a numerical value) if  is an endpiece.

In M1, the set  of available actions at  is written on the decision piece . The

full set  is used for an objective description but may not be used in a subjective

protocol Π which will be defined in Section 3.2. In the subjective case, a player will
use only the set of actions at  occurring in his view. We denote this set at  by  :

 := { ∈  : [( )] ≺  for some  ∈} ⊆  (3.1)
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The latter inclusion is the coherence condition with the full set  Condition M2

requires  to include the information of who moves at . Here, player  may receive

(or observe) a decision piece  at which another player  moves. Finally, in M3, each

player can read his own payoff from each endpiece.

We use information protocols to describe both the target objective situation and a

personal subjective view. The formal distinction between them is made by means of

axioms for them. A protocol for the former should satisfy two basic axioms and three

non-basic axioms. A protocol for a personal view will be required to satisfy only the

two basic axioms. We give the full set of basic and non-basic axioms now.

The first basic axiom is subsequence-closedness. For it, we need a concept of a

subsequence of a sequence in
S∞
=0(( × ) ×  ). We say that a subsequence

of h(1 1)  ( ) +1i is legitimate iff it belongs to
S∞
=0(( × ) ×  ).

For example, hi h(1 1) +1i and h(2 2)  (−1 −1) +1i are legitimate
subsequences of h(1 1)  ( ) +1i but [(2 2) (3 3)] is not. A legitimate
supersequence is defined in the dual manner.

Axiom B1 (Subsequence-Closedness): If h i ∈ ≺ and h0 0i is a legitimate
subsequence of hi then h0 0i ∈ ≺.

Since we consider only legitimate subsequences and supersequences throughout this

paper, we simply write subsequences and supersequences by abbreviating “legitimate”.

The second basic axiom states that the decision pieces can be distinguished from

the endpieces.

Axiom B2 (Weak Extension): If  ≺  and  ∈ , then there are  ∈  and

 ∈ such that [ ( )] ≺ .

Any protocol Π that satisfies Axioms B1 and B2 is called a basic protocol.
To state the non-basic axioms, we need the notion of an exhaustive history called a

position. First, we define an initial segment of a sequence h(1 1)  ( ) +1i
to be h(1 1)  ( ) +1i for some  ≤ We say that a feasible sequence h i
is maximal iff ≺ contains no proper feasible supersequence h i of h i. A position
hi is defined to be an initial segment of some maximal feasible sequence h i Thus,
each position is an exhaustive history up to  in Π. We denote the set of all positions
by Ξ Then, we partition Ξ into the sets:

Ξ = {h i ∈ Ξ :  ∈} and Ξ = {hi ∈ Ξ :  ∈} (3.2)

We call h i ∈ Ξ a decision position and h i ∈ Ξ an endposition.
Let  be a subset of

S∞
=0(( ×) × )) We define:

∆ = {h i : h i is a subsequence of some sequence h i ∈  } (3.3)

Using this, Axiom B1 is stated as ≺ = ∆(≺)
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The following lemma states that we can represent a basic protocol in terms of end-

positions, which may be much easier to describe than the set ≺ 

Lemma 3.1. Let Π = (≺ () ()∈∗) be a basic protocol. Then ≺ = ∆Ξ .
Proof. Let h i be any sequence in ≺. Then h i has a supersequence h i which
is a maximal feasible sequence in ≺  By Axiom B2 (weak extension),  ∈  Hence,

h i ∈ Ξ, and so h i ∈ ∆Ξ. For the converse, let h i ∈ ∆Ξ. Then h i is
a subsequence of some h i ∈ Ξ . Since Ξ ⊆ Ξ ⊆ ≺ by Axiom B1 (subsequence-

closedness), we have h i ∈ ≺ and, again by B1, h i ∈ ≺.
We now list the three non-basic axioms based on the notion of a position.

Axiom N1 (Root): There is a distinguished element 0 ∈  such that h0i is an
initial segment of every position.

This axiom means that all positions start with 0. Without this, the protocol may

have various starts. The next axiom states that an exhaustive history determines a

unique information piece.

Axiom N2 (Determination): Let h i and h i be positions. If  =  and it is

nonempty, i.e., hi 6= hi then  = 

The last axiom states that the set of available actions at an information piece is

independent of a history.

Axiom N3 (History-Independent Extension): If h i is a position and [( )] ≺
, then h ( ) i is a position for some  ∈ .

Axiom N3 implies that the set of available actions at any position h i is the same
as  given in (3.1) If N3 is violated, the set of available actions differ at two positions

ending with the same information piece.

When an information protocol Π satisfies Axioms B1, B2, N1, N2, N3 and ∗ =  ,

we call it a full protocol. A full protocol will be used to describe a target objective

situation, that is, an objective situation is a full protocol Π = (≺ () ()∈ ).
For a personal view, we require only Axioms B1, B2, and also, the payoff assignment

for only the player in question, that is, a subjective protocol is a basic protocol Π =
( ≺ () ()∈∗) with ∗ = {}.

Kaneko-Kline [10] showed that a full protocol is equivalent to an extensive game

in Kuhn’s [13] sense with the replacement of information sets by information pieces.

The equivalence states that from a given full information protocol Π = (≺
() ()∈), we can construct an extensive game, and vice versa. Also, it is shown
that the deletion of each of Axioms N1, N2, N3 corresponds to some weakening of the

definitions for an extensive game. It was also shown that such weakenings are arising
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naturally as inductively derived views. In Sections 4, 6 and 8 of the present paper, we

will encounter several examples violating some of Axioms N1-N3.

We now give one example, which will be used in subsequent sections.

Example 3.1. Consider the following 2-person situation in Fig.3.1, in which the end-
pieces are described as 1 to 4 and players 1 2 move at 0 and 1 2 respectively.

1 :
3
3

2 :
0
0

3 :
1
1

4 :
5
2

- ↑ ↑ %

1 : PL2 2 : PL2
- %

0 : PL1

Fig.3.1

To describe this as an information protocol, we take  = {0 1 2 1  4} and
 = { }. The set of feasible sequences ≺ is quite large, but by Lemma 3.1 it

suffices to list only the endpositions Ξ = {h(0 ) (1 ) 1i, h(0 ) (1 ) 2i,
h(0 ) (2 ) 3i, h(0 ) (2 ) 4i}. This protocol is full, and can be interpreted
as an objective situation.

Remark on Mike’s Map as a Protocol: Fig.2.1.a can be transformed to a full in-

formation protocol, but this transformation loses the lattice structure of the map. The

map requires some geographical identity, while the information protocol treats only

historical identity. In Fig.2.1, two positions (historical paths) h() ()i and
h( ) ( )i determine the same geographical point, the southeast  ; this re-
quires some additional criterion, e.g., paths with the same numbers of east and north

actions identify the same geographical point. The present theory of an information

protocol has no such criterion.

3.2. Memory Functions and Views

The central part of inductive game theory is the consideration of a derivation of a per-

sonal view from memories accumulated in a player’s mind. The source for an inductive

derivation is his memories from experiences. Therefore, a certain interface from indi-

vidual experiences to memories is required. Here, we give the concept of a memory

function as the description of such an interface.

A memory function describes a personal memory capability within one play of an

information protocol. In other words, it describes short-term (local, temporal) mem-

ories within one play of the game. Transition from short-term memories to long-term

memories needs another structure, which is discussed in Kaneko-Kline [9], Akiyama et

al. [1]. We will take some resulting concepts for granted.
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Now, let Π be a basic information protocol, and let Ξ be the set of positions in Π.
In [9], the domain of a memory function for player  is assumed to be the set

Ξ := {h i ∈ Ξ :  ∈ ()} (3.4)

of player ’s positions A memory function may give a short-term memory including

other players’ previous moves. Thus, we extend the domain of a memory function for

player  to a superset of Ξ That is, the domain of a memory function is given as a set
 with Ξ ⊆  ⊆ Ξ.
Definition 3.2 (Memory Functions): A memory function m of player  assigns, to

each hi ∈  a finite sequence h i = h(1 1)  ( ) i satisfying:

 = ; (3.5)

 ≥ 0 and  ∈  ∈  for all  = 1  (3.6)

Condition (3.5) means that the latest piece is the one received at the current position

hi. Except for this requirement, enough flexibility is allowed in (3.6) so as to capture
forgetfulness and incorrect memories. Note that the domain  may contain other

players’ positions, in which case player  receives some other player’s information piece.

We call the value mh i = h i a memory thread and each of ( ) and  in

the thread a memory knot. Thus, the most primitive element in memory is a memory

knot, and a memory thread is a sequence consisting of several memory knots. When

player  reaches a position hi the memory thread h i = h(1 1)  ( ) i
occurs spontaneously in his mind. Memory knots  ( )  (1 1) may be recalled
in the reverse order. A limitation on a player’s short-term memory suggests that these

threads should be short. The most basic case is the memory module of recall -1 i.e., he
receives  and recalls ( ) only, which was discussed in Section 2.

We will consider a slightly more general class of memory functions, called “recall-”.
By “recall-” player  can recall the  latest memory knots within ; this is a limitation
on the length of a memory thread (not a duration of a short-term memory). For this

definition, we need the definition of the -part of a position in . It is the exhaustive

and objective history at a position related to player  in the sense of given 

Formally it is defined as follows: First, we define the index set { :  = 1 + 1
and h(1 1)  (−1 −1) i ∈ } which is denoted by {1  +1}. Then, the -
part h i of h i is defined to be h(1  1)  (  ) +1i This is the maximal
subsequence of hi with the property that the initial segment of h i up to each
 is a position in  Thus, it is the exhaustive and objective history at h i related
to player  For example, when hi = h(1 1) (2 2) 3i = h( ) ( ) i and
 = {hi h( ) ( ) i}, the index set is {1 3} Thus, h i = h(1 1) 3i =
h( ) i.
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The recall- memory function needs the following notation: For h i = h(1 1) 
( ) +1i and a non-negative integer , we define h i by

h i =
½ h(−+1 −+1)  ( ) +1i if  ≤ 

h i if   
(3.7)

It takes the last  part of h i but when  is larger than  it takes the entire hi
Also, when  = 0 we stipulate that h i0 = h+1i = hi

The recall- memory function is now formulated as:

m
 h i = h i for each h i ∈  (3.8)

When the memory bound  is zero, i.e., player  has no recall ability in short-term

memories, it is called the Markov memory function m0
 . It holds that m

0
 hi = hi

for all h i ∈  This is of importance only as a reference point of our analysis
5.

The recall- memory functions may include partiality and forgetfulness, but the

memories are correct in the sense that each memory thread is a subsequence of the true

position. This correctness will be used in Theorem 8.1.

When  is longer than the maximum depth of the protocol, we call m
 the perfect-

recall memory-function6, denoted by m
 . It is given as:

m
 h i = hi for each h i ∈  (3.9)

With m
  player  recalls all the information pieces and actions previously observed

by himself. This function will play an important role in Sections 5.2 and 8.

Two extreme cases with respect to  should be emphasized. When  coincides with

the set Ξ of all positions, the memory function defined by (3.9) is called the perfect-
information memory function and is denoted by m

  In this case, m
 h i = h i

for all hi ∈  = Ξ With m

 , player  recalls the complete history within a play

of Π including the other players’ pieces and actions. The other extreme is given by

 = Ξ = {h i ∈ Ξ :  ∈ ()} and the memory function m
 is called the

self-scope perfect-recall memory function, denoted by m
  With this, the player only

has memories of his own information pieces and actions. This was exclusively used in

Kaneko-Kline [8] and [10].

Having described an information protocol and memory functions, we now have the

basic ingredients for objective descriptions and subjective personal views.

5A reader may wonder why m0
  instead of m1

  is called Markov. In probability theory, “Markov”

means that the present random variable depends only upon the immediately previous random variable.

It is the analogy here that the present action is taken only depending upon the immediately previous

(present) information piece.
6This differs considerably from Kuhn’s [13] “perfect-recall” condition on information sets, which will

be discussed in Section 6.
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The objective description is the target social situation for our study. It exists in the

objective world and constitutes one part of the entire social system depicted in Fig.1.2.

We regard a full protocol as a complete description up to observables: information pieces

and available actions.

(Objective Situation): A pair (Πm) is called an objective situation iff Π =
(  ≺ ( ) {}∈) is a full protocol with 

 =  for all  ∈  

and m = (m
1 m


) is an -tuple of memory functions in Π.

We use the superscript  to denote the objective situation, and put a superscript 

to denote a personal view of player .

A personal (subjective) view exists in the mind of player  and it is derived from

only his observations. Typically such a view is a partial description of the objective

situation (description). Thus, we require it only to be a basic protocol. One remark is

that player  cannot directly experience the others’ payoffs and local memories. Hence,

his personal view contains his payoff functions and memory function only.

(Personal View): A pair (Πm) is a personal view for player  iff Π = (  ≺
( ) ) is a subjective protocol, i.e., it is a basic protocol, with a specification of
player ’s payoff function , and m is a memory function for player  in Π.

3.3. Behavior Patterns, Closed Domains, and Memory Kits

Suppose that the objective situation (Πm) is played repeatedly. Behavior of each
player is described by the concept of a behavior pattern. Recall that Ξ and Ξ are,
respectively, the set of decision positions for all players and that of positions for player

 Let Ξ := Ξ ∩ Ξ be the set of decision positions for player  A function  on

Ξ is a behavior pattern (strategy) of player  iff it satisfies: for all h i h i ∈ Ξ 

h i ∈ 
; (3.10)

m
 h i = m

 h i implies h i = h i (3.11)

Condition (3.10) means that  prescribes an available action to each decision position,

and (3.11) that  depends upon the local memory of the player moving there. We

denote, by Σ  the set of all behavior patterns for player  in (Π
m) We say that an

-tuple  = (1  ) is a profile of behavior patterns.
Although a behavior pattern is defined as a complete contingent plan, we do not

require that the player be fully aware of it. Rather he should be able to take an action

whenever he is called upon to move. Condition M1 ensures that a player can see the

available actions, and pick one, maybe, a default action, whenever one of his decision

pieces is reached. We use the term behavior pattern to express the idea that the behavior
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of a player may initially have no strategic considerations. Once a player has gathered

enough information about the game, his behavior may become strategic.

We presume that the players follow some regular behavior patterns  = (1  

)

Sometimes, however, some players may deviate from these behavior patterns, which

leads to new experiences and short-term memories for them. These short-term memories

remain for some periods of time, but after these periods, they would disappear, except

when they have occurred frequently enough to reinforce the short-term memories as

lasting in his mind. When such a case occurs, a short-term memory becomes a long-

term memory, and remains for longer periods.

Since there are many aspects involved in such an evolution process, there would be

many possible formulations of the dynamics. Also, since the relevant time structure

must be finite, limit theorems are not of interest to us at all. Therefore, we think that a

computer simulation is an appropriate method to study the dynamics of accumulation

of long-term memories. One simple version is given in Akiyama et al. [1]. Here, we

do not give a formulation of a dynamics itself. Instead, we give a general definition of

possible results of such a dynamic accumulation process, which we call a memory kit.

The memory kit is defined over its objective counterpart, a domain of accumulation

 which is is a subset of  satisfying:

 contains at least one endposition h i in Ξ (3.12)

In the beginning of trial-error, this condition may not be satisfied. We consider the

inductive process after he reaches a state with (3.12).

For  we start with a basic domain. A subset 
 of  is said to be a cane

domain iff for some endposition h i, 
 is given as the set {h i ∈  : h i is

an initial segment of h i} Thus, 
 is the set of all positions in  continuing to

the endposition h i. When every player follows his regular behavior pattern  with

no deviations, we have the regular cane domain. A subset  of  is said to be a closed

domain of accumulation iff it is expressed as the union of some cane domains. A closed

domain satisfies (3.12). We focus largely on closed domains in this paper.

A domain  is still the objective description of experienced positions for player .

However, this gives the memory kit 
describing the accumulated experiences in the

mind of player  :


:= {m
 h i : hi ∈ } (3.13)

It is determined by both the domain  and the objective memory function m

 of

player . This is the set of long-term memories changed from short-term memories. See

Kaneko-Kline [9] and Akiyama et al. [1] for full discussions about such transitions. The

memory kit 
is the source for an inductive construction of a personal view, i.e., the

memory threads in 
are used to construct a skeleton of the personal view.

15



4. Inductive Derivations

We now start the main part of the paper. It is about the inductive construction of a

personal view from a memory kit 
of player . Partiality in a player’s local memory

forces us to consider multiple views for the same memory kit, which opens the theory

to new types of induction. In Section 4.3, we discuss the existence of an inductively

derived view for each memory kit on a given domain, and conditions for a given set of

memory threads to generate an inductively derived view.

4.1. Inductively Derived Views

Suppose that the objective situation (Πm) = (  ≺ ( ) {}∈  {m
}∈)

is fixed. The sets of decision pieces and endpieces in Π are denoted by   , and

the corresponding sets in a personal view (Πm) are denoted by    Now, an

inductively derived view is defined as follows.

Definition 4.1 (I.D.View). A personal view (Πm) = (   ≺ (  ) m)
for player  is an inductively derived view from a memory kit 

iff

ID1(Information Pieces):   = { ∈   :  occurs in some sequence in 
}

  ⊆  and   ⊆ ;

ID2(Actions): 
 ⊆ 

 (= ) for each  ∈ ;

ID3(Feasible Sequences): ∆
⊆ ≺;

ID4(Player Assignment): () = () if  ∈   and () =   if  ∈  

where   := { ∈  :  ∈ () for some  ∈ };
ID5(Payoff Assignment): () =  () for all  ∈ ;

ID6(Memory Function): m is the perfect-information memory function m for Π.

The above definition is the same as the one in [10] except condition ID3. In [10], the

corresponding condition requires equality, i.e., ∆
= ≺. The same type of require-

ment was made in [8] for the extensive game version of an i.d.view. Nevertheless, here

we should discuss all of ID1 - ID6. These connect the candidate i.d.view to the objective

situation (Πm) by making use of the minimum information conditions stated in M1,

M2, and M3. Condition ID3 will be discussed after the other conditions.

Since (Πm) is a personal view, it is required to satisfy Axioms B1 and B2.
Condition ID1 states that player  uses only information pieces he finds in his memory

kit, i.e., the set   defined from ≺ by IP3 coincides with the set of pieces occurring
in 

 It follows from M1 and M3 that he distinguishes between the decision pieces

and endpieces; thus,   ⊆   and   ⊆   Condition ID2 requires that an

available action at  in the player’s view should be an objectively available one at 
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i.e., 
 is defined from ≺ by (3.1), but is not limited to the set of actions occurring in


. Conditions ID4 and ID5 are based on M2 and M3 to connect the player assignment

at decision pieces and payoffs at endpieces in Π to those found in the objective protocol
Π. We assume condition ID6 since the view (Πm) is in the mind of player .

Once a personal view is specified with ID1, ID2 and ID3, the other ID4, ID5 and

ID6 uniquely determine the player assignment, payoff and memory function. Hence, all

questions about an i.d.view for a given 
can be answered by checking ID1 - ID3.

Let us return to ID3. A simple example shows the need for the weaker form, ∆
⊆

≺ of ID3 when memory is partial.
Example 4.1 (The Absent-minded Driver Game): Consider the 1-player (Πm

1)
described as Fig.4.1 with the recall-1 memory function m

1 = m
1
1 , where payoffs 0 6 3

are regarded as information pieces. Recall-1 gives him the following memories: m1
1 hi =

hi, m1
1 h( ) i = h( ) i, m1

1 h( ) ( ) 3i = h( ) 3i, m1
1 h( ) 0i =

h( ) 0i and m1
1 h( ) ( ) 6i = h( ) 6i. This differs from the interpretation

considered in Isbell [7] and Piccione-Rubinstein [15] in that player 1 can distinguish the
first hi from the second h( ) i. Nevertheless, his forgetfulness prevents him from

understanding the objective protocol7.

0 6
↑ ↑
 →


 →


3

6 0
↑ ↑
 →


 →


3

Fig.4.1 Fig.4.2

Consider the case of the full domain of accumulation 1 = Ξ
. His memory kit is

1 = {hi h( ) i h( ) 3i h( ) 0i h( ) 6i} It is the first fact that from
this 1 , there is no i.d.view satisfying ∆1 = ≺1: Indeed, if there was an i.d.view
with ∆1 = ≺1 then  would be a decision piece in ≺1 but no feasible sequence
in ∆1 is an extension of h( ) i a violation of Axiom B2 (Weak Extension). To

avoid this difficulty, we weaken ∆
= ≺ into ∆

⊆ ≺ in ID3.
With ID3: ∆

⊆ ≺ it is easy to construct an i.d.view for the above example;
both Fig.4.1 and Fig.4.2 satisfy ID3. Thus, we have already multiple i.d.views even if

we require them to satisfy Axioms B1, B2 and N1-N3.

4.2. 2-Person Example

In Example 4.1, we have multiple i.d.views caused by partiality (forgetfulness) in the

memory function. With more players, we will have different problems. To see this, we

consider the objective situation described in Example 3.1.

7 If we follow faithfully the interpretation given in Isbell [7] and Piccione-Rubinstein [15], then the

memory function of player 1 is Markov, i.e., m0
1  for which an i.d.view is quite arbitary.
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Suppose that each  has the self-scope perfect-recall memory function m
 = m



over the domain  = Ξ

  The domain Ξ


1 ofm


1 has five positions ending with0 1  4,

and Ξ2 of m

2 has six positions ending with 1 2 1  4 For example, m


1 h0i =

h0i and m
1 h(0 ) (1 ) 1i = h(0 ) 1i.

Let us specify the behavior patterns 1 and 2 so that they take always actions .

Here, we consider three types of domains of accumulation 

Cane Domains 
 : Let 12 be the cane domains, e.g., 


1 = {h0i h(0 )

(1 ) 1i}; neither player has an experience generated by a deviation. Here, 
1

=
{h0i h(0 ) 1i} and 

2
= {h1i h(1 ) 1i} can be regarded as i.d.views for 1

and 2 respectively, which are represented as Fig.4.3.a and b. Each player  notices the
existence of available action  at his decision information piece, i.e., 0 or 1 but he

does not know where it leads, since he has no experience of  If each continues choosing

only action  this situation remains stable.

1 1
↑ ↑
0 1

1 3
- %

0

1 2
- %

1

Fig.4.3.a and b Fig.4.4.a and b

Unilateral Active Domains 
 : Now, suppose that player  has the unilateral-

active domain, each position of which is obtained by his own deviation:


1 = {h0i h(0 ) (1 ) 1i h(0 ) (2 ) 3i};


2 = {h(0 ) 1i h(0 ) (1 ) 1i h(0 ) (1 ) 2i}

In this case, 
1

= {h0i h(0 ) 1i h(0 ) 1i} and 
2

= {h1i h(1 ) 1i
h(1 ) 2i} These form i.d.views, described as Fig.4.4.a and b.

Full Domains 
 = Ξ : As stated above, 


1 and 

2 have five and six positions,

and 
1
 

2
are given as


1

= {h0i h(0 ) 1i h(0 ) 2i h(0 ) 3i h(0 ) 4i};


2
= {h1i h(1 ) 1i h(1 ) 2i h2i h(2 ) 3i h(2 ) 4i}

These are also regarded as i.d.views, described in Fig.4.5 and Fig.4.6. The former

violates Axiom N2(Determination), and the latter violates Axiom N1(Root).

1 2 3 4
- ↑ ↑ %

0

1 2
- %

1

3 4
- %

2

Fig.4.5 Fig.4.6
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We did not yet consider equilibrium: A behavioral use of an i.d.view is rather for

decision making/behavior revision before the convergence to an equilibrium point. After

having trials and errors many times and having different individual views, the situation

may come to equilibrium. Inductive game theory does not start with an equilibrium

situation, but may require many repetitions to reach an equilibrium, or even players may

get stuck in a non-equilibrium situation. To study these problems, we should be careful

about each step from trial/error, accumulation of experiences, inductive derivatives of

his view, and behavioral uses. In our discourse, we consider each of these steps.

Finally, let us consider the full domains with the players’ memories described even

at the other player’s decision pieces: 1 = 2 = Ξ
 consisting of all positions in the

protocol Π. Here, we keep the assumption of each player having the perfect recall

memory, but we extend his domain of accumulation to the positions of the other player.

In this way, a player can accumulate memories about the other player. In this case, the

smallest view for each player  is the same as Fig.3.1 except for the other player’s payoffs.

We treat the other person’s payoff as personal information. One source for gaining this

type of information is considered in Kaneko-Kline [11], where players may switch roles

(player’ identities). We show there that the additional structure for role-switching may

actually facilitate the emergence of cooperation.

4.3. Existence of an I.D.View and the Structure of I.D.Views for a Memory

Kit

The existence of an i.d.view is guaranteed with our weakened ID3. Let (Πm) be any
objective description. The theorem will be proved in the end of this section.

Theorem 4.1 (Existence of an i.d.view): Let  be any domain of accumulation.

Then, there exists an i.d.view for the memory kit 
obtained from  and m


 .

As seen in Example 4.1, the multiplicity of i.d.views is an inevitable consequence

of our ID3. It comes from various different ways of cutting and extending the memory

threads in his memory kit. In fact, for each memory kit, there are a countably infinite

number of i.d.views. This can be seen by observing that once we have an i.d.view, we

can construct another by adding the same decision piece to the front of each maxi-

mal sequence in the view. This implies that great many supersets of ∆
constitute

i.d.views. Our next task is to find precisely what shapes they might take.

Let  be a finite subset of
S∞
=0((

 ×) × ) We say that a superset  of

∆
is conservative iff for each h(1 1)  ( ) +1i ∈  1  +1 occur

in ∆
and  ∈ 


for  = 1  We note by ID1 and ID2 that if (Πm) is an

i.d.view, then ≺ is a conservative superset of ∆


Then, we have the following additional result.

Lemma 4.2. Let  be a conservative superset of ∆
. Then, there is at most one
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i.d.view from 
with ≺ =  .

Proof. Suppose that (Πm) = (  ≺ ( ) m) and (Π0m0) = ( 0 0
≺0 (0  0) 0 m0) are both i.d.views from 

with ≺ = ≺0 =  . By IP3,  = 0

and  = 0. Since, ( 0 0≺0) = (  ≺), conditions ID4, ID5, and ID6 imply
that ( m) = (0 0m0).

This result is in sharp contrast with Kaneko-Kline [9], where an i.d.view is defined

in terms of an extensive game. There we met another type of multiplicity caused by

the hypothetical elements of nodes and branches. The use of an information protocol

enables us to avoid this problem, which will be mentioned in the end of Section 5.1.

The next theorem gives a necessary and sufficient condition for a conservative su-

perset of ∆
to be an i.d.view. Essentially, condition (i) corresponds to Axiom B1

and condition (ii) to Axiom B2. Thus, we have a direct way to check whether or not a

conservative superset  of 
will form an i.d.view. Applying this theorem to Example

4.1, we can find more i.d.views.

Theorem 4.3.(Conditions for an i.d.view): Let  be a conservative superset of

∆
. Then, there is an i.d.view (Πm) = (  ≺ ( ) m) from 

with

≺ =  if and only if

(i):  = ∆ ;

(ii):  ∈  for any maximal sequence hi ∈  .

Proof. (Only-if): Let (Πm) = (  ≺ (  ) m) be an i.d.view from 

with ≺ =  . Then (i) holds by Axiom B1. Consider (ii). Let h i be a maximal
sequence in  (= ≺). Since Π is a basic protocol, hi must be an endposition in Π
by Lemma 3.1. Hence  ∈  and by ID1,  ∈ .

(If): Suppose that (i) and (ii) hold. Then we define   = { ∈   :  occurs in },
 = { ∈  :  occurs in }, and ≺ =  .

First, we show Axioms B1 and B2 for (  ≺). By (i), we have Axiom B1.

Consider Axiom B2. Let h i ∈ ≺ and  ∈  . Since  is conservative upon


, we have  ∈   Thus, by (ii), there can be no maximal sequence in ≺ = 

ending with . Hence, ≺ has some feasible sequence h ( ) i so that both hi
and h ( ) i are supersequences of h i. By Axiom B1, h ( ) i is a feasible
sequence. Thus, we have Axiom B2 for Π.

Next, we show that the conditions ID1 to ID6 are satisfied. The first part of ID1

follows from the supposition that  is conservative upon 
 It follows from (ii) and

B2 that   ⊆   and   ⊆   Condition ID2 follows from conservativeness.

Condition ID3 follows from  ⊇ ∆
. Since ID1, ID2 and ID3 are satisfied,   and

m are uniquely determined by ID4, ID5, and ID6.
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Under a weak additional condition, we can extend Theorem 4.1 to obtain an i.d.view

satisfying Axioms N1, N2 and N3.

Theorem 4.4 (Existence of a Full I.D.view): Assume that  contains at least one

decision piece  with |
| ≥ 2 There is an i.d.view from 

satisfying Axioms N1, N2

and N3.

1 2 3
↑ ↑ ↑
0 −→


0 −→


0 −→


4

Fig.47

This theorem may generate an unnatural view: For example, the memory kit 
1

in Section 4.2 has an i.d.view with B1, B2 and N1-N3, described in Fig.4.7. We can,

however, prove8 Theorem 4.4, using this method of extending a given memory kit 
.

Proof of Theorem 4.1: We construct the set  satisfying the conditions (i) and (ii)

of Theorem 4.3.

Consider  := {h i ∈ 
: h i is a maximal thread in 

and  ∈  } If
 = ∅ then we let  = ∆

 This  satisfies (i) and (ii).

Suppose  6= ∅ Then this  cannot directly be used for ≺ since ID1, particularly,
  ⊆  is violated. To overcome this difficulty, we extend each h i ∈  slightly

to meet ID1. For each h i ∈ , we choose an action hi ∈ 
 and denote the set

of those hi’s by  By (3.12),  has at least one endposition hi. We extend


to  0
as follows:

 0
= 

∪ {h ( hi) i : h i ∈ } (4.1)

This set  0
is constructed so that every maximal feasible sequence ends with some

endpiece, that is,

 ∈  for any maximal sequence hi in  0
. (4.2)

We let  = ∆ 0
 Then, (i) holds and (ii) follows (4.2).

5. Comparisons of Views

We have the existence of an i.d.view for a given memory kit 
. As stated above,

Definition 4.1 allows us to have a countably infinite number of i.d.views. A player

often discriminates between views in some ways. One is a criterion to choose a small

8A proof is found in http://www.sk.tsukuba.ac.jp/SSM/libraries/pdf1201/1207.pdf.
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view. In this section, we consider “smallness” of a view, and also some comparisons of

views based on the length of recall- In Section 8, we will consider some other ways for

discriminating between views.

Let (Πm) (Π0m0) be two i.d.views from a memory kit 
We say that (Πm)

is smaller than (Π0m0) iff
≺ ⊆ ≺0  (5.1)

An i.d.view (Πm) is minimal iff no i.d.view is strictly smaller than (Πm) and is
the smallest iff it is smaller than every i.d.view from 

. If the smallest view exists,

it is unique. Since an i.d.view is finite, it follows from Theorem 4.1 that there exists a

minimal i.d.view for any 
 On the other hand, when there are more than one minimal

views, the smallest view does not exist. In Example 4.1, the protocols of Fig.4.1 and

4.2 are both minimal.

The notion of “smallness” is based on the idea of not using more sequences than

what are needed, which is the criterion of the economy of thought (Occam’s Razor).

We have some other criteria for smallness different from (5.1), e.g., the cardinality
¯̄≺¯̄.

We can compare any two views by
¯̄≺¯̄, but the cardinality ignores the contents of the

sequences, while (5.1) captures those contents.

There are some clear-cut cases to have the smallest i.d.view. A simple case is to

have an i.d.view (Πm) with ≺ = ∆
. We state this fact as the next lemma.

Lemma 5.1. Let (Πm) = (  ≺ ( ) m) be an i.d.view from a memory

kit 
 If ≺ = ∆

, then (Πm) is the smallest i.d.view for 
.

In all the examples in Section 4.2, we have ≺ = ∆
 We see from them that

minimal i.d.views often violate some of Axioms N1-N3. On the other hand, we find in

Example 4.1 that some minimal i.d.views with ∆
Ã ≺ satisfy N1-N3.

A necessary and sufficient condition for the existence of an i.d.view with ≺ = ∆

is given in the following corollary of Theorem 4.3.

Corollary 5.2. Let 
be a memory kit. There is an i.d.view for 

with ≺ = ∆

if and only if  ∈  for any maximal thread h i in 
.

Proof. This follows from Theorem 4.3. Indeed, if there is an i.d.view for 
with ≺

= ∆
 then condition (ii) of Theorem 4.3 is the latter statement. Conversely, if the

latter holds, then by taking  = ∆
for Theorem 4.3, we have an i.d.view for 

with ≺ = ∆


Kaneko-Kline [8] and [10] focused on the self-scope perfect-recall memory function

m
 and used the strict definition ≺ = ∆

for an i.d.view. Here, a perfect-recall

(not necessarily, self-scope) memory function m
 determines the smallest i.d.view on

any closed domain.

Corollary 5.3. Let 
be the memory kit of player  obtained from m

 = m

 on a
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closed domain . There is the smallest i.d.view from 
with ≺ = ∆

.

Proof. It suffices to show the latter part of Corollary 5.2 holds. Let h i be any
maximal thread in 

 By the definition of 
 m

 hi = h i for some hi ∈ 

Since m
 = m


  we have m

 hi = h i = hi Since  is closed, we find some

endposition h i ∈  such that hi is an initial segment of h i However, since
hi is maximal in 

 we have  =  ∈ .

Remark on an advantage of information protocols over extensive games: It is

now apt to mention an advantage of the theory of information protocols over extensive

games. If we adopt the theory of extensive games, comparison between two extensive

games takes a quite different form from (5.1), since its primitives such as nodes and

branches are hypothetical additions to observed information pieces. In Kaneko-Kline

[9], this comparison is formulated by means of some structure-preserving functions,

which is more complicated than (5.1). The theory of information protocols has this

advantage in addition to its simpler axiomatic nature.

We now consider the recall-memory function of a player and the associated i.d.views

for it. We fix the domain  of player  and his domain of accumulation . We are

interested in how the i.d.views change when the length  of recall- increases. If his

memory ability is very weak, e.g.,  = 0 or  = 1, then we might expect a great
multiplicity of minimal i.d.views. However, as his ability gets stronger, the number of

minimal i.d.views decreases which is stated as the following result.

Lemma 5.4 (Higher Recall Reduces Possibilities): Let 
  0

be the memory

kits obtained from the recall- recall-0 memory functions. If   0, then every i.d.view
for 

is an i.d.view for  0
.

Proof. Let (Πm) be an i.d.view for 
. We show that (Πm) is also an i.d.view

for  0
. Since ≺ ⊇ ∆

by ID3 for 
and ∆

⊇ ∆ 0
by   0 we have ≺ ⊇

∆ 0
 i.e., ID3 for  0

. Since  is the last piece in mh i and m0h i, we have
{ ∈  :  occurs in 

} = { ∈  :  occurs in  0
}. Thus, ID1, ID2, ID4, ID5,

and ID6 for  0
follow directly from the corresponding conditions for 

.

The smallest i.d.view for a perfect-recall memory function m
 = m

 on a closed

domain was given in Corollary 5.3. By Lemma 5.4, this view is also a view for any

level of recall. To state this fact formally, we refer to this i.d.view as the PR-view for

 denoted by (Π
m) where the set of feasible sequences ≺ is defined to be

∆{m
 h i : hi ∈ } The closedness of  is sufficient for the PR-view to be an

i.d.view.

Corollary 5.5 (PR-View is an i.d.view for any Recall- Memory Function):

Let m
 be the recall- memory function m


 ( ≥ 0) on a closed domain  for player

. Then the PR-view (Π m) for  is an i.d.view for 
.
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6. Kuhn’s Distinguishability Condition

In the theory of extensive games, Kuhn [13] gave a mathematical condition on informa-

tion sets, which is called “perfect recall” in the game theory literature. In our theory,

however, it is no more than an attribute of information pieces and histories. It is for-

mulated as follows: An information protocol Π satisfies the distinguishability condition
for player  iff for any hi h i ∈ ,

h i 6= h i implies  6= . (6.1)

When  = Ξ
 (6.1) is the converse of Axiom N2 (Determination). It states that

when two positions have different personal histories up to , some clue to differentiate

the histories is included in the current pieces9. It does not express player ’s recall

ability. Nevertheless, an included clue helps the player avoid unintended concatenations

of memory threads in constructing an i.d.view. We have the following theorem, which

will be proved in the end of this section.

Theorem 6.1 (Smallest Under Distinguishability): Let (6.1) hold for player  in

Π, and m
 = m


 for  ≥ 1. Let  be a closed domain. The PR-view (Π

m) is
the smallest i.d.view for 

among the i.d.views for 
satisfying (6.1).

We will use Mike’s Bike to explore this result. Consider the full domain case of

Mike’s Bike with recall-1 Then, (6.1) is violated since he receives the same piece at
several lattice points. Suppose, however, that we give Mike a distance meter, and we

skew the town so that the distance from  to each lattice point differs. Let hi be
the distance through the path hi Then the new information piece Mike receives at
each lattice point is described as:

 ∧ hi (6.2)

With the distance meter and skewed town, Mike receives a different information piece

at each lattice point after each history to that lattice point10, and so (6.1) is satisfied.

We remind the reader of the remark on Mike’s Bike, at the and of Section 3.1, which

describes some difference between an IP and the lattice structure of a map. Since a lat-

tice point in Mike’s Bike may be reached by two different histories, the corresponding

9We find some analogy between this idea and the Eve-hypothesis in the recent biological antholopol-

ogy. It is based on the assumption that some different antholopological histories inherited through

women can be distinguished by some differences in their current mitochondoria. See Mithen [14].
10We remind the reader of the remark on Mike’s Bike at the and of Section 3.1which describes some

distance between an IP and the lattice structure of a map. Since a lattice point in Mike’s Bike may be

reached by two different histories, the corresponding information protocol will have multiple histories for

a given lattice point. The distinguishability condition requires these histories, and not just the lattice

points, to be distinguished.
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information protocol will have multiple histories for a given lattice point. The distin-

guishability condition requires these histories, and not just the lattice points, can be

distinguished.

When Mike has only recall-1 ability with no distance meter, he finds various possible
manners to connect his memory threads. However, with a distance meter, he can

distinguish between each history, and find a unique smallest way to connect his memory

threads. In fact, this corresponds to the true map. On the other hand, he cannot find

the unique smallest view with the recall-0 memory function.
Consider another example of an information piece. Let the information piece(s)11 at

each lattice point describe the complete history to it; for example, let Mike reaches the

northeast  through the path hi = h( ) ( ) ( ) ()i according
to the above description. Now we assume that, instead of receiving just  , he receives

the information piece

( ) ∧ ( ) ∧ () ∧ () ∧ (6.3)

This piece contains all information about his previous moves and so it may be interpreted

as expressing “perfect recall”. The entire history about his choices and lattice locations

are recorded in the present information piece describe by (6.3), but Mike does not need

to recall his past memories.

Although both (6.2) and (6.3) are entirely different, both satisfy (6.1). The common

property in these examples, captured by (6.1) is that these pieces are distinguished.

Hence, we call it “distinguishability”, rather than “perfect recall”.

We will use the following lemmas in the proof of Theorem 6.1. Now, we fix the

objective situation (Πm) and a closed domain .

Lemma 6.2. If Π satisfies (6.1) for player , then so does the PR-view Π.

Proof. Let hi h i be decision-positions in Π with h i 6= h i. Since Π is
the PR-view, there are two positions h0 i h0 i ∈ Ξ such that h0 i = h i and
h0 i = h i. Since h i 6= h i we have h0 i 6= h0 i By (6.1) for Π, we have
 6= .

Condition (6.1) guarantees that the information pieces represent the positions.

Lemma 6.3. Let (Πm) be a personal view of player  satisfying (6.1) Then, the

function  defined by hi =  for all hi ∈ Ξ is a bijection from Ξ to  .

Proof. By IP3 for Π  is a surjection. Let hi h i ∈ Ξ with h i 6= h i. By
(6.1), we have  6= .

Proof of Theorem 6.1. Since is a closed domain andm

 = m


 ( ≥ 1) (Πm)

11The use of piece(s) is caused by multiple paths to the same lattice point.
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is an i.d.view for 
by Corollary 5.5 and it satisfies (6.1) by Lemma 6.2. Now, let

(Πm) be any i.d.view (Πm) for 
satisfying (6.1). Since Π and Π are i.d.views

for 
, we have   = by ID1. By Lemma 6.3, for each  ∈  =, there is

a unique position to  in Π, and correspondingly, a unique position to  in Π. We
prove ≺ = ∆Ξ ⊆ ∆Ξ = ≺ 

We show by induction on the length of positions that for each  ∈ , the

position h i to  in Ξ is a subsequence of the position hi to  in Ξ. This
implies ∆Ξ ⊆ ∆Ξ

For the base case, let h i be a position of length 1 to  in Ξ, i.e., hi = hi.
The unique position hi to  in Ξ is a supersequence of hi.

Next, let hi = h(1 1)  (−1 −1) i be a position of length   1 in
Ξ. The inductive hypothesis is that the position h0 −1i = h(1 1)  (−2 −2)
−1i in Ξ is a subsequence of the position h0 −1i in Ξ. Hence:

h i = h0 (−1 −1) i is a subsequence of h0 (−1 −1) i (6.4)

Since player  has the recall- ( ≥ 1) memory function on a closed domain , the

sequence h(−1 −1) i ∈ ∆
. By IP3, h(−1 −1) i is a subsequence

of the position hi in Ξ. This together with the uniqueness of a position for

each piece by Lemma 6.3 implies that the position h0 −1i is an initial segment of
hi Hence, there is a 0 ∈  such that h0 (−1 −1) 0i is an initial segment
of hi. Hence, h0 (−1 −1) i is a subsequence of hi By (6.4), the
position h i in Ξ is a subsequence of hi in Ξ.

1 2 3 4
- ↑ ↑ %

1 2

1 2 3 4
- ↑ ↑ %

1  −→ 2

Fig.6.1 Fig.6.2

We finish this section with two remarks about Theorem 6.1. First, by Lemma 6.3,

the cardinalities of some Ξ satisfying (6.1) and Ξ are the same as that of  =.

This appears to imply that the PR-view Π is the only view satisfying (6.1). However,
we have a counterexample. Consider Example 3.1 with 2 = Ξ


2 and m


2  The PR-

view for player 2 is given as Fig.6.1. The protocol of Fig.6.2 is another i.d.view for 2

satisfying (6.1), and it is strictly larger than the PR-view. The second remark is that

Theorem 6.1.states only that the PR-view (Π) is smallest among those with
(6.1). We may find a counterexample with a smaller view that violates (6.1).
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Figure 7.1: The Cane and Skinny Views

7. Mike’s Bike Commuting (2): Evolution of a View

A player’s i.d.view evolves together with his memory kit over time as he accumulates

more experiences. This evolution process is related to his memory ability and his be-

havioral tendencies. Here we explore this process using Mike’s bike commuting.

From the Cane Domain to Skinny Domains: Suppose he has the memory func-

tion of recall-1. In the beginning, his experienced domain 
1 is simply the regular

route. One i.d.view (Π1m1) is this regular route together with the perfect-information
memory function m1 = m  which is depicted in Fig.7.1.A.

After some time, the domain of accumulation has grown by one additional route

with the bold dotted arrows through the southwest  The new domain 0
1 is given as


1 ∪the set of initial segments of h() ( ) () () ( ) ( ) i

and is depicted in Fig.2.1.B. Here, the memory kit 0
1
is given as

0
1
= 

1
∪ {h( )i h()i h()i}

This kit leads him to develop the expanded i.d.view of Fig.2.1.B12.

Stagnation: If he tries another deviation from the north  his experienced domain

gains yet more positions and is given as 
00
1 = 0

1∪the set of initial segments of
h() () ( ) () ( ) ( ) i See Fig.7.1.B. Since, however, the
additional h( )i from the north  is already in memory kit 0

1
 this does not

change his memory kit, i.e., 0
1
= 00

1
 Hence, his i.d.view may be stagnant.

If his memory function is recall-2 then the newest memory kit 00
1
is strictly larger

than the previous 0
1
and the original 

1
.

12Here, we represent this set of positions by the map of the form Fig.2.1.B. The positions themselves

need not imply this representation. If Mike does this practice, he uses some additional assumptions on

the town. Here, we simply use the map representation for simplicity.
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Figure 7.2: True and Imaginary

From Skinny Domain to the Full Domain: After many commutes, he has effectively

experienced all places in the town. Consider the possible i.d.views when his memory is

recall- for small .

Suppose that Mike has recall-1. First, the IP corresponding to the true map

(Fig.2.1.A) and that corresponding to the the larger one (Fig.7.2.A) are possible i.d.views.

However, there are several minimal views, which are obtained by the procedure given

in the proof of Theorem 4.1. Even if we restrict our attention to minimal views with

the non-basic axioms N1-N3, we would find that Fig.2.1.A is not yet a minimal one.

In this case, however, recall-2 is enough to guarantee that Fig.2.1.A corresponds to the
smallest view.

If we allow him to have a stronger memory, say recall- but  ≤ 4 then there is
still a minimal i.d.view smaller than Fig.2.1.A. If he has memory function of recall-5 or
higher (perfect-recall), then his smallest view corresponds to the true map.

Thus, we have seen that additional requirements (memory, trials, or other informa-

tion) may help the player to obtain a better view.

True or Imaginary Structure: Let us return to the skinny domain case. Even though

he trusts his own memory kit 
1

 there is another i.d.view having more repetitions

of  and  A possible i.d.view is depicted in Fig.7.2.B.

We can see this fact in the other way around: Suppose that the true town has the

5 × 4 street structure depicted as Fig.7.2.A. When Mike has the memory function of
recall-1 the memory kit is the same as the previous memory kit 

1
depicted in

Fig.7.1.A. Hence, his i.d.view corresponding to Fig.7.1.A is an i.d.view in this case.

This interchangeability of the “true structure” and “an i.d.view” holds even when

we go to the full domain. This fact means that with partiality in the memory ability,

the truth is difficult to find.
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8. Two Types of Behavioral Uses of I.D.Views

Now, a player brings and uses his view in the objective situation. We consider two

such uses here. In Section 8.1, we study the problem of him checking his i.d.view with

new experiences in the objective situation. We show that only the PR-view survives

this checking when he checks his view in a sufficiently broad manner. In Section 8.2,

we study how he may use his view to construct an optimal strategy for the objective

situation. While his view may violate Axioms N1-N3, for optimal decision making, only

the violation of N2 causes a serious problem.

8.1. Behavioral Checking of I.D.Views

When the memory function is partial, there may be multiple i.d.views for a player

even if he focuses on minimal i.d.views. Multiplicity of i.d.views could be a serious

problem if they suggest different behaviors. In this case, he may start looking for more

clues to discriminate between those views. Here, we consider how he might use his new

experiences to reject or accept some views. Throughout this section, we assume a closed

and fixed domain of accumulation .

Suppose that player  has an i.d.view Π, while keeping his regular behavior and
making new trials within the domain  of accumulation. His memory is now aided by

his view Π: At a position h i in (Πm) he experiences his local memory m
 h i

and considers its relation to his view Π. He tries to identify each of his experiences
with a position in his subjective view Π Also, he checks successive positions in Π with
successive experiences. In this process, he may find some incoherence between his view

Π and experiences. If no such incoherence exists between them, he keeps (Πm).
Checking requires disciplined efforts for player  It incurs large mental costs, which

is contradictory to our basic presumption that the player has limited ability, time, and

energy. Nevertheless, this is a matter of degree. Here, we explore the case where he is

disciplined and has enough time and energy for sufficient checking. In this sense, the

consideration here should be regarded as a limiting case.

To describe the above idea of successive checking, we define immediate successorship

relations in Π (actually in ) and Π
. We define the relation h i 

 h i in 

iff h i is an immediate successor of h i in  with the choice of action  at 

Likewise, h0 0i 
 h0 0i is defined in Π in which case, h0 0i is, directly, the

immediate predecessor position of h0 0i with the choice  at h0 0i.
We say that player  cannot falsify (Π) with his experiences iff there is a function

 from  to the set of positions Ξ
 in Π such that

F0:  is a surjection;

F1: for any hi in  if h i = h i then  = ;

F2: for any hi h i in  h i 
 h i if and only if hi 

 h i
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The existence of  is required from the objective point of view, since player  does

not know the structure of . Nevertheless, F0, F1 and F2 describe the stability of an

i.d.view against player  having the ability of effectively falsifying Π by his experiences.
If F0 is violated, then he realizes after some time that some position in Π never occurs.
Condition F1 means that he identifies his currently received piece  with some position

ending with  in Π. Condition F2 is the requirement of player ’s successive checking
of his current and next positions in the objective Π and in his view Π. The if-part is
more subtle than the only-if part: every pair of successive experiences predicted by his

view has an objective counterpart in . This, together with F0 and F1, eliminates the

i.d.view of Fig.6.2.

The process of successive checking goes as follows. When he receives the first piece

 in Π, he finds the minimal position hi in ΠWhen he receives the next piece  after
action  at  he finds the immediate successor h( ) i of hi in Π He continues
this process, and when F0-F2 are satisfied, he finds no difficulties, and otherwise, he

would find something wrong with his present view.

We say that the memory function m
 is -correct iff m


 h i is a subsequence of

hi for all h i ∈ . The next theorem states that under the assumption of -

correctness on m
 , the PR-view is the only i.d.view that cannot be falsified, which will

be proved in the end of this subsection.

Theorem 8.1 (Falsification and the PR-View). Let  be a closed domain and

m
 a -correct memory function. Let (Π

m) be an i.d.view from a memory kit 
.

Then (Πm) cannot be falsified with experiences if and only if (Πm) is the PR-view.

We now consider one important implication of Theorem 8.1. Suppose that player 

considers his possible i.d.views from his memory kit and proceeds in the following way:

P1: his i.d.views (Π1m1) (Π2m2)  are enumerated;13

P2: If he brings the i.d.view (Πm) with him to the objective situation and finds some
incoherence with experiences, then he replaces it with the next view (Π(+1)m(+1))

If F0-F2 can be applied without errors, a consequence of Theorem 8.1 is that the above

process terminates with the PR-view.

Nevertheless, the process of falsification may fail with some difficulties. As far as

(Πm) is an i.d.view from the memory kit 
 we find a function  satisfying require-

ment F1. Hence, we restrict our attention to a function  satisfying F1: Falsification

itself is characterized by the negation of F0 or F2. The falsification of F2 is clear-cut:

While he has received two successive memory threads m
 h i and m

 h i with action
 at  hi and h i do not successively occur in Π On the other hand, falsifi-
cation of F0 is more problematic: Trial-error has stochastic components, as described

13Note that he does not need to enumerate all of these views before this process. Instead, he needs

only some algorithm to have a “next” candidate from the present one.
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in Akiyama et al [1]. Even though some position in Π has not occurred after many
repetitions, player  may remain uncertain about whether it will ever occur. Here, he

needs to make a doxastic decision (cf. Plato [16]) or a statistical decision to reject the

present view (Πm). There may be two types of errors as in statistical inference (cf.,
Rohatig [17], p.708). A Type I error occurs when player  waits for every position in

Π to occur and incorrectly does not reject the present (incorrect) view, and a Type II
error occurs if he does not wait long enough for some position in (Πm) and incor-
rectly rejects the (correct) PR-view. But once player  makes a doxastic decision that

his PR-view is not falsified, it would be stable.

In Example 4.1 (Absent-minded Driver Game), player 1 has various minimal i.d.view
such as Fig.4.2. Now, he brings this view in his mind when he drives. Then, unless he

continues choosing  he would not find anything wrong. But once he deviates to take

action  he would find his view could be incorrect. He may use a different one (or he

may revise it in some way).

Proof of Theorem 8.1.(If ): Let (Πm) be the PR-view on a closed domain .

Then ≺ is given as ∆{h i : hi ∈ }, equivalently, the set of positions in Π is
Ξ = {hi : hi ∈ }We define  by h i = hi for all hi ∈ Then, 

satisfies F0 and F1. Consider F2. Suppose that h i h i in  and h i 
 h i

Then, h i h i are positions in Π and hi = h i 
 h i = h i The

converse can be seen by tracing back this argument.

(Only-If ): Suppose that (Πm) cannot be falsified. Then there is a function  from

 to Ξ
 satisfying F0, F1, and F2. We show by induction that h i = hi for all

hi ∈ 

Let h i be a minimal position in  i.e., no proper initial segment of h i is
in  Then, h i = hi since  is closed. Thus, m


 h i = hi by -correctness.

By F1, h i = h(1 1)  ( ) i satisfies  = . Now, suppose, on the

contrary, that h i 6= h i = hi i.e.,  ≥ 1. Since  is a surjection to Ξ by
F0, there is a h i in  such that h i = h(1 1)  (−1 −1) i. Then,
h i 


h i. Hence, by F2, we have h i 


hi which contradicts the

assumption that h i is a minimal position in . Hence, h i = hi.
Now, we suppose the inductive hypothesis that hi = h i. For convenience,

we write h i as h i. Let h i be the next position in  reached after taking 

at , i.e., h i 
 h i. Then, h i = h ( ) i. By F2, h i 

 h i. It
follows from this and the inductive hypothesis that h i = h ( ) i for some .
Since  =  by F, we have h i = h ( ) i = h i.

8.2. Violations of N1-N3 and their Effects on Decision Making with a View

The i.d.view he settles on may not be a full information protocol, as seen in Section

4.2. In this section, we discuss problems related to this. Suppose that player  finds an
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i.d.view (Π) by some method and decides to use it for his decision making. Then,
this subjective view Π may violate Axioms N1-N3 even if it is the PR-view. We con-
sider the problems arising from each violation:

Violation of N1(Root): The view has several trees;

Violation of N2(Determination): An exhaustive history does not determine a

unique present information piece;

Violation of N3(History-Independent Extension): Some available actions at a

position are not available at a position ending with the same information piece.

Since those violations are caused for different reasons, we should connect difficulties in

decision making with the original objective situations causing the violations.

The violations of N1 and N2 may be caused by partial memory and the ignorance of

another player, which are seen in Fig.4.6 and Fig.4.5 The main cause for the violation

of N3 is the partiality of the domain  It is easy to find an example of  and a

memory function so that an i.d.view violates N3.

Now, we consider potential difficulties in decision making. If N3 is violated, the

player should simply ignore the unused actions and he will face no serious problem in

decision making. The violation of N2 is more serious as seen in Fig.4.5, where player

1 may not be able to decide between  and  The violation of N1 may appear also to

create difficulties with decision making, but the analysis below shows that this is not

the case.

Let (Πm) be a personal view of player  and let   be the player set of Π In
(Πm) the definition of a strategy needs a slight change: a strategy  for player  ∈  

is defined by (3.11) and (8.1): for any position h i ∈ Ξ 

h i ∈ { : h ( ) i is a position for some  in Π} (8.1)

Since (Πm) is a subjective view, we use a different letter to denote a strategy. Now,
we denote a profile of strategies for   by  = ()∈   Then, we say that a position

h ( )  ( ) +1i is -compatible with a position h i iff ()h i = 
and ()h ( )  (−1 −1) i =  for  =  + 1 

Since Axiom N2 guarantees that for any  = +1  h (−1 −1)  (−1 −1) i
and  determine the unique piece +1, we have the following.

Lemma 8.2 (Strategy-Determinancy). Let (Πm) be an i.d.view satisfying Axiom
N2, and  = ()∈ a strategy profile Then, any position h i uniquely determines
an endposition which is -compatible with h i.

For a position h i and strategy profile  = ()∈ , we define the conditional

payoff hi() to be the set of payoffs for player  given at the endpositions that are
-compatible with h i In the example of Fig.4.5, 1(0) =  gives 1h0i() = {3 0}
and 01(0) =  gives 1h0i(

0) = {1 5}
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Suppose that − is fixed. We say that a strategy  is unambiguously optimal at a

position h i iff for any strategy 0 for player 

 ∈ hi( −) and 0 ∈ hi(0 −) imply  ≥ 0 (8.2)

We say that  is unambiguously optimal iff it is unambiguously optimal at all decision

positions h i for player  in Π. These are relative concepts to the given − In other
words, at any decision position of player , the worst payoff from his given strategy is at

least as good as the best from any alternative. In the example of Fig.4.5, no strategy is

unambiguously optimal. Nevertheless, we have a guarantee that such a strategy exists

for any i.d.view satisfying N2.14.

Theorem 8.3 (Unambiguous Optimality with Axiom N2). Let (Πm) be an
i.d.view that satisfies Axiom N2, and let − be a profile of other players’ strategies.
Then, there is an unambiguously optimal strategy  for player .

We remark that the theorem uses the fact that the subjective memory function m

is the perfect-information memory function m . As mentioned earlier, since player 

has this view in his mind, the perfect-information memory function makes sense.

We have seen by Fig.4.5 that the violation of Axiom N2 presents potential problems

with decision making. If player  has a difficulty in decision making because his view

violates N2, he may try to overcome it in various ways. He may modify his view to

meet Axiom N2 such as in Theorem 4.4. Alternatively, he may use a weaker optimality

criterion such as maximin optimality, i.e., he compares the worst payoffs compatible

with each strategy. Another possibility is to look beyond his memory kit for some

source of this indeterminacy, e.g., the move of an unobserved player.

9. Conclusions

First, we give an overall summary by highlighting the main findings along the steps

given in Section 1.3.

Highlight 1 : In Kaneko-Kline [8] and [10], an inductively derived view is effectively the

same as the memory kit. This paper generalized the definition of an inductively derived

view to allow a larger set of feasible sequences than the accumulated memory kit. This

facilitates explorations of partiality in the objective memory function m
 .

Highlight 2 : This generalized definition of an i.d.view allows general existence of an

i.d.view, but there are multiple ones. On the one hand, multiplicity may be regarded

as a cost in that the analysis becomes more complicated. On the other hand, it leads

us to a new frontier of inductive game theory that may help us to understand a variety

14A proof is found in http://www.sk.tsukuba.ac.jp/SSM/libraries/pdf1201/1207.pdf
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of views observed in society.

Highlight 3 : We considered minimal/smallest i.d.views. Minimality avoids large redun-

dant views, but there may still be multiple minimal ones. When m
 has partiality,

minimal views may not capture essential structures in that they are too small.

Highlight 4: Under Kuhn’s distinguishability condition, a player may reach the PR-view

as the smallest. However, it is a demanding requirement for an information piece, and

also the player is required to be able to analyze the hints hidden in each piece. In this

sense, the result is not necessarily regarded as a resolution of multiplicity.

Highlight 5 : Using Mike’s bike commuting, we have shown that as the experienced do-

main is increased with time, a personal view is evolving, i.e., for some time, it is getting

larger. However, he may get stuck with the same view even if he has more experiences.

Highlight 6 : The next step is to check an i.d.view with new experiences in the objective

situation. If he is fortunate, he reaches the PR-view and it becomes stable in the sense

that he notices no incoherence between his view and experiences. However, it could

take a long time to reach the PR-view or he might even reject it or fail to reach it.

Highlight 7 : Even if he takes a view as stable, e.g., the PR-view, he might meet some

difficulties in his decision making. This is caused by the violations of Axioms N1-N3 for

his view. The violation of Axiom N2 is more serious than the others: As long as Axiom

N2 is satisfied, he can use his view for his payoff maximization.

We have many results on each step of the discourse, but there still remain many

open problems. For example, what happens with the later part of this paper when the

objective memory function has more incorrect components? For this problem, computer

simulations may help. Another important problem is how each player gets the other

player’s understanding of the situation. We discuss this problem in Kaneko-Kline [11].

Nevertheless, treatments of individual experiences as well as individual views are basic

for the further development of the new theory of other players’ thoughts. We need to

consider also interactions between various players’ views and behavior. We anticipate

that these explorations will lead to many new insights on human behavior and thought

in society.
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